数据集与算法评估
数据集
Fashion-MNIST数据集
1、FashionMNIST 是一个替代 MNIST 手写数字集 的图像数据集。它是由 Zalando旗下的研究部门提供,涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。
2、FashionMNIST 的大小、格式和训练集/测试集划分与原始的MNIST 完全一致。60000/10000 的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。
CIFAR-10数据集
1、 CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像;
2、 数据集分为五个训练批次和一个测试批次,每个批次有10000个图像。测试批次包含来自每个类别的恰好1000个随机选择的图像。
以下是数据集中的类,以及来自每个类的10个随机图像:
PASCAL VOC数据集
➢ PASCAL的全称是Pattern Analysis, Statistical Modelling and Computational Learning
➢ VOC的全称是Visual Object Classes
➢ 目标分类(识别)、检测、分割最常用的数据集之一
➢ 第一届PASCAL VOC举办于2005年,2012年终止。常用的是PASCAL 2012
➢ 一共分成20类:
⚫ person
⚫ bird, cat, cow, dog, horse, sheep
⚫ aeroplane, bicycle, boat, bus, car, motorbike, train
⚫ bottle, chair, dining table, potted plant, sofa, tv/monitor
20类图像实例:
MS COCO数据集
提供的标注类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。
⚫ 人:1类
⚫ 交通工具:8类,自行车,汽车等
⚫ 公路常见:5类,信号灯,停车标志等
⚫ 动物:10类,猫狗等
⚫ 携带物品:5类,背包,雨伞等
⚫ 运动器材:10类,飞盘,滑雪板,网球拍等。
⚫ 厨房餐具:7类,瓶子,勺子等
⚫ 水果及食品:10类
⚫ 家庭用品:7类,椅子、床,电视等
⚫ 家庭常见物品:17类,笔记本,鼠标,遥控器等
MS COCO数据集示例:
ImageNet数据集
➢ 始于2009年,李飞飞与Google的合作:“ImageNet: A Large-Scale Hierarchical Image Database”
➢ 总图像数据:14,197,122
➢ 总类别数:21841
➢ 带有标记框的图像数:1,034,908
➢ 训练集:1,281,167张图片+标签
➢ 类别数:1,000
➢ 验证集:50,000张图片+标签
➢ 测试集:100,000张图片
算法评估
算法评估相关概念
TP: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数
FP: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数
FN:被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数
TN: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数
P(精确率): TP/(TP+FP)
R(召回率): TP/(TP+FN)。召回率越高,准确度越低
P-R曲线
P-R的关系曲线图,表示了召回率和准确率之间的关系
精度(准确度)越高,召回率越低
举个栗子:
例子:80个男生,20个女生,做个女生识别器。结果测试了50个全部
输出女生,其中20个本来是女生,30个男生
TP: 20; FP:30 FN:0, TN: 0.
准确率:40%;
召回率:100%
置信度与准确率
可以通过改变阈值,来选择让系统识别能出多少个图片,当然阈值的变化会导致Precision与Recall值发生变化。
AP计算
mAP计算
多类的检测中,取每个类AP的平均值,即为mAP