关于torch.stack(tensors, dim=0)中dim值的理解

#新建一个张量x
x=torch.tensor([[1,2],
                [2,3],
                [3,4]])
x.shape, x.ndim
#输出结果
 (torch.Size([3, 2]), 2)
#4个x叠加,dim=0
x_stacked = torch.stack([x, x, x, x],dim=0)
x_stacked,x_stacked.shape,x_stacked.ndim
#输出结果:
(tensor([[[1, 2],
          [2, 3],
          [3, 4]],
 
         [[1, 2],
          [2, 3],
          [3, 4]],
 
         [[1, 2],
          [2, 3],
          [3, 4]],
 
         [[1, 2],
          [2, 3],
          [3, 4]]]),
 torch.Size([4, 3, 2]),
 3)
#4个x叠加,dim=1
x_stacked1 = torch.stack([x, x, x, x], dim=1)
x_stacked1, x_stacked1.shape, x_stacked1.ndim
#输出结果:
(tensor([[[1, 2],
          [1, 2],
          [1, 2],
          [1, 2]],
 
         [[2, 3],
          [2, 3],
          [2, 3],
          [2, 3]],
 
         [[3, 4],
          [3, 4],
          [3, 4],
          [3, 4]]]),
 torch.Size([3, 4, 2]),
 3)
#4个x叠加,dim=2
x_stacked1 = torch.stack([x, x, x, x], dim=2)
x_stacked1, x_stacked1.shape, x_stacked1.ndim
#输出结果:
(tensor([[[1, 1, 1, 1],
          [2, 2, 2, 2]],
 
         [[2, 2, 2, 2],
          [3, 3, 3, 3]],
 
         [[3, 3, 3, 3],
          [4, 4, 4, 4]]]),
 torch.Size([3, 2, 4]),
 3)

dim还可以是负值,如-1,-2,PyTorch 会将其视为指定的维度在张量中的逆序位置。例如,以以上这个三维张量 x,形状为 (3, 2),并且我想要在最后一个维度上进行操作,但是我们不知道它的确切索引位置。在这种情况下,我们可以指定 dim=-1,PyTorch 将自动计算出最后一个维度的索引位置,并在其上进行操作。

总结:以上述为例,当有4个(或者是n个)2维张量x叠加时,叠加生成新的张量x_stacked的维度肯定为3,但是叠加时,dim属性值设置不同或者是叠加个数设置不同,x_stacked的shape会不同,以叠加个数是4为例,当dim=0的时候,x_stacked的shape为[4, 3, 2],它的第一维为叠加x的个数,第二维和第三维是x的高度和宽度;
当dim=1的时候,x_stacked的shape为[3, 4, 2],看结果是x的行叠加,也就是将叠加个数放到了第二维;
当dim=2的时候,x_stacked的shape为[3, 2, 4], 看结果是每一行内每一列的元素相叠加,故其结果的形状是将叠加个数放到了第三维。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值