手把手教你做单细胞测序数据分析(二)———数据读取

相信经过大家这一个礼拜的学习,已经能够熟练的掌握R语言与Linux,现在我们就正式开始课程!有疑惑欢迎后台交流。

一、代码:


library(multtest)
if(!require(multtest))install.packages("multtest")
if(!require(Seurat))install.packages("Seurat")
if(!require(dplyr))install.packages("dplyr")
if(!require(mindr))install.packages("mindr")
if(!require(mindr))install.packages("tidyverse")
#####自动读取cellranger(LINUX)输出的feature barcode matric
rm(list = ls())
pbmc.data <- Read10X(data.dir = "filtered_gene_bc_matrices/hg19/") 
#自动读取10X的数据,是一些tsv与mtx文件
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "biomamba")

####仅有一个稀疏矩阵时的读取方法#####
matrix_data <- read.table("single_cell_datamatrix.txt", sep="\t", header=T, row.names=1)
dim(matrix_data)
seurat_obj <- CreateSeuratObject(counts = matrix_data)

######读取RDS文件############
rm(list = ls())
pbmc <- readRDS("panc8.rds")
saveRDS(pbmc,"pbmc.rds")


#############
library(tidyverse)
str(pbmc)
library(mindr)
(out <- capture.output(str(pbmc)))
out2 <- paste(out, collapse="\n")
mm(gsub("\\.\\.@","# ",gsub("\\.\\. ","#",out2)),type ="text",root= "Seurat")

二、视频:

保姆级教程 《手把手教你做单细胞测序数据分析》-第二讲 数据读取

三、所需文件:打开链接中的R脚本即可运行

链接:https://pan.baidu.com/s/1bX8dfe4ncycbrXh3X4Emew

提取码:1234

四、本系列其他课程

手把手教你做单细胞测序数据分析(一)——绪论

手把手教你做单细胞测序数据分析(二)——各类输入文件读取

手把手教你做单细胞测序数据分析(三)——单样本分析

手把手教你做单细胞测序数据分析(四)——多样本整合

手把手教你做单细胞测序数据分析(五)——细胞类型注释

手把手教你做单细胞测序数据分析(六)——组间差异分析及可视化

手把手教你做单细胞测序数据分析(七)——基因集富集分析

欢迎关注同名公众号~

### 单细胞测序代码实现 单细胞测序技术涉及多种工具和方法来处理数据,这些工具通常用于分析基因表达模式、空间特征以及特定域的检测。以下是几个与单细胞测序相关的代码实现示例。 #### 基因标记物的空间可视化 通过 `SpatialFeaturePlot` 函数可以对脑部对象中的某些特性进行绘图并展示其分布情况[^2]。此函数允许指定要可视化的特性和透明度参数,从而帮助研究者理解不同簇之间的差异。 ```r SpatialFeaturePlot( object = brain_obj, features = rownames(cluster10_markers)[1:3], alpha = c(0.1, 1), ncol = 3 ) ``` #### 细胞计数统计 对于样本中唯一基因的数量统计可以通过访问变量 `nFeature_Spatial` 来完成,这有助于了解每个样品内的基因多样性[^3]。下面是一个简单的 R 脚本片段用来打印前三个样本的独特基因数量: ```r print(brain_data$nCount_Spatial[1:3]) print(brain_data$nFeature_Spatial[1:3]) ``` #### 领域调用器 (Domain Caller) Python 实现了一个名为 `domaincaller` 的原始 DI 领域调用算法,该库可以帮助识别高维数据集中的结构化区域[^4]。安装和基本使用的例子如下所示: ```bash pip install git+https://github.com/XiaoTaoWang/domaincaller.git@main ``` ```python import domaincaller as dc # Example usage of DomainCaller API here... data_matrix = ... # Your data matrix goes here. result_domains = dc.call_domains(data_matrix) for dom in result_domains: print(f"Found domain from {dom.start} to {dom.end}") ``` #### STPlus 工具包介绍 STPlus 是一款针对空间转录组数据分析设计的强大软件解决方案,它提供了详尽文档支持,并开放源码供社区使用[^5]。可以从清华大学健康研究中心获取最新版本及其说明文件或者直接克隆 GitHub 存储库来进行本地部署测试。 ```bash git clone https://github.com/xy-chen16/stPlus.git cd stPlus/ python setup.py install ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值