16位顶尖学者激辩AGI!LSTM之父、麦克阿瑟天才奖得主齐聚

一年一度的人工智能辩论回归,关注点在于通用人工智能(AGI)。专家们讨论了认知与神经科学、常识、架构、伦理道德以及政策问题。他们认为,先天结构、语言理解、常识推理和元学习是AI发展的关键要素,同时强调了AI与人类价值观一致性和治理规则的重要性。
摘要由CSDN通过智能技术生成

来源:新智元

中断一年后,由Montreal.AI和纽约大学名誉教授Gary Marcus组织的年度人工智能辩论于上周五晚上回归,与2020年一样再次以线上会议形式召开。

今年的辩论——AI辩论3:AGI 辩论——重点关注通用人工智能的概念,即能够集成无数接近人类水平的推理能力的机器。

1c75ef02fc03c1841f5c1ab8f84f8dc0.png

视频链接:https://www.youtube.com/watch?v=JGiLz_Jx9uI&t=7s

本次讨论共计三个半小时,围绕与人工智能相关的五个主题展开: 认知与神经科学、常识、架构、伦理与道德以及政策和贡献

除了众多计算机科学领域的大牛外,还有计算神经科学家Konrad Kording等16位专家参与其中。

本文简单总结了其中5位大佬的观点,感兴趣的读者可以通过上面的链接观看完整视频。

主持人:马库斯

作为著名的批评家,马库斯引用了自己在《纽约客》上的文章《「深度学习」是人工智能发展的一场革命吗?》,再次对AI的发展泼了盆冷水。

马库斯表示,与李飞飞团队成功发布ImageNet后人们对人工智能长达十年的热情浪潮相反,制造无所不能的机器的「愿望」并没有实现。

d04d8d351bd0d8ed5f176e3d37c6f8c6.jpeg

DeepMind神经科学家Dileep George

来自谷歌DeepMind的神经科学家Dileep George曾经提出过一个名为「先天性」的概念。

简单来说,就是某些「内建」在人类思想中的想法。

那么对于人工智能来说,我们应该更关注先天性吗?

11f55c3ad631bf2829a20f55b4c6c7b8.jpeg

对此,George表示,任何一种从初始状态到某种稳定状态的增长和发展都涉及三个因素。

一是初始状态下的内部结构,二是输入的数据,三是通用的自然法则。

「事实证明,先天结构在我们发现的每个领域都发挥着非凡的作用。」

对于那些被认为是学习的典型例子,比如习得语言,一旦你开始拆解,就会发现数据几乎并不会对其产生影响。

自从人类出现以来,语言就没有改变过,任何文化中的任何孩子都能掌握语言就证明了这一点。

George认为,语言将成为人工智能的核心,从而让我们有机会搞清楚,到底是什么让人类成为一个如此独特的物种。

华盛顿大学教授Yejin Choi

华盛顿大学计算机科学教授Yejin Choi预测道,AI在未来几年内的表现,将越来越惊人。

但是,由于我们并不知道网络的深度,它们将继续在对抗性和边角案例上犯错。

7a11e6451fa112abe1a36b41959b6ead.jpeg

「对于机器来说语言和智力的暗物质,可能就是常识。」

当然,这里所说的暗物质,是对人类来说容易但对机器来说很难的东西。

LSTM之父Jürgen Schmidhuber

马库斯表示,我们现在可以从大型语言模型中获取大量的知识,但实际上这种范式需要被转变。因为语言模型实际上被「剥夺」了多种类型的输入。

瑞士人工智能实验室IDSIA主任、LSTM之父Jürgen Schmidhuber回应称,「我们今天讨论的大部分内容,至少在原则上,已经在很多年前通过『通用神经网络』得到解决。」 这样的系统「还不如人类」。

1c23dc7aecc58ad4d6c93591cd336caf.jpeg

Schmidhuber表示,随着计算能力每隔几年变得更便宜,「旧理论」又回来了。「我们可以用这些旧算法做很多当时我们做不到的事情。」

接着,IBM研究员Francesca Rossi向Schmidhuber提出了一个问题:「我们怎么会看到仍然没有我们想要的功能的系统?你怎么看?那些定义的技术仍然没有进入当前的系统?」

对此,Schmidhuber认为,目前主要是计算成本问题:

循环网络可以运行任意算法,其中最美妙的方面之一是它还可以学习学习算法。最大的问题是它可以学习哪些算法?我们可能需要更好的算法。改进学习算法的选项。

第一个此类系统出现在1992年。我在1992年写了第一篇论文。那时候我们对此几乎无能为力。今天我们可以拥有数百万和数十亿个权重。

最近与我的学生进行的合作表明,这些旧概念在这里和那里进行了一些改进,突然间效果非常好,你可以学习比反向传播更好的新学习算法。

英属哥伦比亚大学副教授Jeff Clune

英属哥伦比亚大学计算机科学副教授Jeff Clune讨论的主题是「AI生成算法:通往AGI的最快路径」。

Clune表示,今天人工智能走的是一条「人工道路」,这也就意味着各种学习规则和目标函数等等都需要靠人来手动完成。

对此他认为,在今后的实践中,人工设计的方法终究是要让位于自动生成的。

6580f456505c9a92d40c0ae20820137f.png

随后,Clune又提出了推动AI发展的「三大支柱」:元学习架构、元学习算法,以及自动生成有效的学习环境和数据。

在此,Clune建议增加一个「第四支柱」,即「利用人类数据」。比如,在Minecraft环境里运行的模型,就可以通过学习人类玩游戏的视频获得「巨大的提升」。

最后,Clune预测,我们有30%的可能性在2030年实现AGI,而且还不需要新的范式。

值得注意的是,此处AGI被定义为「能够完成50%以上的有经济价值的人类工作」。

总结一下

在讨论的最后,马库斯让所有参与者在30秒内回答一个问题:「如果你能给学生一条建议,例如,现在我们最需要研究哪个人工智能的问题,或者如何为人工智能日益成为主流和中心的世界做好准备,建议是什么?」

Choi称:「我们必须处理AI与人类价值观保持一致的问题,尤其是要强调多元化;我认为这是我们面临的真正关键挑战之一,更广泛地应对诸如鲁棒性、泛化和可解释性等挑战。」

George从研究方向角度给出建议:「先确定好想从事规模化研究还是基础研究,因为它们有不同的轨迹。」

Clune:「AGI即将到来。所以,对于开发AI的研究人员,我鼓励你们从事基于工程、算法、元学习、端到端学习等技术,因为这些最有可能被吸收进入我们正在创建的 AGI。对于非AI研究人员来说,最重要的可能是治理问题。例如,开发AGI时的规则是什么?规则由谁来决定?我们又该如何让全世界的研究人员都遵循这套规则?」

马库斯在晚会结束时回忆起他在上一场辩论中的发言:「培养人工智能需要一村子的人。」

「我认为现在更是如此,」他说。「AI以前是个孩子,现在有点像一个闹腾的少年,还没有完全具备成熟的判断力。」

他总结说:「这一刻既令人兴奋又危险。」

参考资料:

https://www.zdnet.com/article/ai-debate-3-everything-you-need-to-know-about-artificial-general-intelligence/

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

99fd89ad2e24bec089068e74081716ce.jpeg

👆 长按识别,邀请您进群!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值