这十套练习,教你如何用Pandas做数据分析(03)

9 篇文章 2 订阅
9 篇文章 0 订阅

练习3-数据分组

探索酒类消费数据

在这里插入图片描述
步骤1 导入必要的库

运行以下代码

import pandas as pd
步骤2 从以下地址导入数据

运行以下代码

path3 =‘…/input/pandas_exercise/pandas_exercise/exercise_data/drinks.csv’ #‘drinks.csv’
步骤3 将数据框命名为drinks

运行以下代码

drinks = pd.read_csv(path3)
drinks.head()
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
0 Afghanistan 0 0 0 0.0 AS
1 Albania 89 132 54 4.9 EU
2 Algeria 25 0 14 0.7 AF
3 Andorra 245 138 312 12.4 EU
4 Angola 217 57 45 5.9 AF
步骤4 哪个大陆(continent)平均消耗的啤酒(beer)更多?

运行以下代码

drinks.groupby(‘continent’).beer_servings.mean()
continent
AF 61.471698
AS 37.045455
EU 193.777778
OC 89.687500
SA 175.083333
Name: beer_servings, dtype: float64
步骤5 打印出每个大陆(continent)的红酒消耗(wine_servings)的描述性统计值

运行以下代码

drinks.groupby(‘continent’).wine_servings.describe()
count mean std min 25% 50% 75% max
continent
AF 53.0 16.264151 38.846419 0.0 1.0 2.0 13.00 233.0
AS 44.0 9.068182 21.667034 0.0 0.0 1.0 8.00 123.0
EU 45.0 142.222222 97.421738 0.0 59.0 128.0 195.00 370.0
OC 16.0 35.625000 64.555790 0.0 1.0 8.5 23.25 212.0
SA 12.0 62.416667 88.620189 1.0 3.0 12.0 98.50 221.0
步骤6 打印出每个大陆每种酒类别的消耗平均值

运行以下代码

drinks.groupby(‘continent’).mean()
beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol
continent
AF 61.471698 16.339623 16.264151 3.007547
AS 37.045455 60.840909 9.068182 2.170455
EU 193.777778 132.555556 142.222222 8.617778
OC 89.687500 58.437500 35.625000 3.381250
SA 175.083333 114.750000 62.416667 6.308333
步骤7 打印出每个大陆每种酒类别的消耗中位数

运行以下代码

drinks.groupby(‘continent’).median()
beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol
continent
AF 32.0 3.0 2.0 2.30
AS 17.5 16.0 1.0 1.20
EU 219.0 122.0 128.0 10.00
OC 52.5 37.0 8.5 1.75
SA 162.5 108.5 12.0 6.85
步骤8 打印出每个大陆对spirit饮品消耗的平均值,最大值和最小值

运行以下代码

drinks.groupby(‘continent’).spirit_servings.agg([‘mean’, ‘min’, ‘max’])
mean min max
continent
AF 16.339623 0 152
AS 60.840909 0 326
EU 132.555556 0 373
OC 58.437500 0 254
SA 114.750000 25 302

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值