正则化和最大后验估计(MAP)

正则化

前提

  • y = k x + b y=kx+b y=kx+b

  • 拟合结果 f ( w ) = w T x f(w)=w^Tx f(w)=wTx

  • 运用最小二乘法得到损失函数 L = ∑ i = 1 N ∣ ∣ w T x i − y i ∣ ∣ 2 L=\sum^N_{i=1}||w^Tx_i-y_i||^2 L=i=1NwTxiyi2

  • 对损失函数求导可得 w = ( X T X ) − 1 X T Y w=(X^TX)^{-1}X^TY w=(XTX)1XTY

由于 X T X X^TX XTX有可能是不可逆矩阵,因此发成可能有无数多个解,很容易造成过拟合

处理过拟合的方法

  • 增加数据量
  • 减小模型复杂度 :典型的是对特征进行处理
    • 例如:特征的选择、特征提取(PCA)、 通过方差(方差大通常来说数据的波动大,有效信息更多)、p值
  • 正则化

w = a r g m i n [ L ( w ) + λ P ( w ) ] = a r g m i n J ( w ) w=argmin[L(w)+\lambda P(w)]=argminJ(w) w=argmin[L(w)+λP(w)]=argminJ(w) λ > 0 \lambda>0 λ>0

注: L ( w ) L(w) L(w)为原损失函数, P ( w ) P(w) P(w)可理解为惩罚函数, λ \lambda λ为正则化参数, λ P ( w ) \lambda P(w) λP(w)为正则项

L 1 L^1 L1正则化 (Lasso回归,套索回归)

L 1 L^1 L1正则化通过让原目标函数加上了所有特征系数绝对值的和来实现正则化

P ( w ) = ∣ ∣ w ∣ ∣ 1 = ∑ i = 1 m ∣ w i ∣ P(w)=||w||_1=\sum^m_{i=1}|w_i| P(w)=w1=i=1mwi

L 2 L^2 L2正则化 ( Ridge回归,岭回归)

L 2 L^2 L2正则化通过让原目标函数加上了所有特征系数的平方和来实现正则化。

P ( w ) = ∣ ∣ w ∣ ∣ 2 2 = ∑ i = 1 N w i 2 P(w)=||w||^2_2=\sum^N_{i=1}w_i^2 P(w)=w22=i=1Nwi2 w T w w^Tw wTw

J ( w ) = L ( w ) + λ P ( w ) J(w) = L(w)+\lambda P(w) J(w)=L(w)+λP(w)

    = L ( w ) + λ w T w =L(w)+\lambda w^Tw =L(w)+λwTw

J ( w ) ′ = L ( w ) ′ + ( λ w T w ) ′ J(w)'=L(w)'+(\lambda w^Tw)' J(w)=L(w)+(λwTw)

     = X T X W + X T X W − X T Y − X T Y + 2 λ I W =X^TXW+X^TXW-X^TY-X^TY+2\lambda IW =XTXW+XTXWXTYXTY+2λIW

     = 2 X T X W − 2 X T Y + 2 λ I W =2X^TXW-2X^TY+2\lambda IW =2XTXW2XTY+2λIW

​     = 0 =0 =0

w = ( X T X + λ I ) − 1 X T Y w=(X^TX+\lambda I)^{-1}X^TY w=(X

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值