数据结构之二叉平衡树
二叉平衡树是一种自平衡二叉搜索树,具有以下特点:
- 每个节点的左子树和右子树的高度差最多为1;
- 每个节点的左子树和右子树也都是一棵二叉平衡树。
实现原理:
- 插入操作:向二叉平衡树中插入一个元素时,先按照二叉搜索树的规则找到插入位置,然后从插入位置开始向上追溯,检查每个节点的平衡因子是否超过1。若超过1,则需要通过旋转操作进行平衡处理。具体来说,可以分为四种情况:
- LL型:在节点的左子树的左子树上插入节点导致不平衡,需要进行右旋操作;
- RR型:在节点的右子树的右子树上插入节点导致不平衡,需要进行左旋操作;
- LR型:在节点的左子树的右子树上插入节点导致不平衡,需要进行先左旋再右旋操作;
- RL型:在节点的右子树的左子树上插入节点导致不平衡,需要进行先右旋再左旋操作。
- 删除操作:从二叉平衡树中删除一个元素时,先按照二叉搜索树的规则找到要删除的节点,然后进行删除操作。删除后,从删除位置开始向上追溯,检查每个节点的平衡因子是否超过1。若超过1,则需要通过旋转操作进行平衡处理,具体处理方式与插入操作相同。
通过插入和删除操作的平衡处理,可以使二叉平衡树保持平衡,从而提高了搜索、插入和删除的效率。
一、C 二叉平衡树源码实现及详解
二叉平衡树是一种自平衡的二叉搜索树,它的每个节点都满足以下性质:
- 它的左子树和右子树的高度之差不超过1;
- 它的左子树和右子树都是一棵二叉平衡树。
二叉平衡树的平衡操作包括左旋和右旋。左旋是指将一个节点的右子树作为新的子树,同时该节点成为新子树的左子树;右旋是指将一个节点的左子树作为新的子树,同时该节点成为新子树的右子树。
以下是 C 实现的二叉平衡树代码,其中包括节点的插入、删除和打印操作:
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
int val;
int height;
struct TreeNode* left;
struct TreeNode* right;
};
int max(int a, int b) {
return a > b ? a : b;
}
int height(struct TreeNode* node) {
return node == NULL ? -1 : node->height;
}
int getBalance(struct TreeNode* node) {
return node == NULL ? 0 : height(node->left) - height(node->right);
}
struct TreeNode* createNode(int val) {
struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
node->val = val;
node->height = 0;
node->left = NULL;
node->right = NULL;
return node;
}
struct TreeNode* leftRotate(struct TreeNode* node) {
struct TreeNode* newRoot = node->right;
node->right = newRoot->left;
newRoot->left = node;
node->height = max(height(node->left), height(node->right)) + 1;
newRoot->height = max(height(newRoot->left), height(newRoot->right)) +