数据结构与算法之最大子数组和问题

最大子数组和问题是一个经典的问题,在算法领域中有很多实际应用场景。该问题的具体描述如下:给定一个整数数组,找到其中连续元素的最大和。

例如,给定数组 [-2,1,-3,4,-1,2,1,-5,4],其最大子数组为 [4,-1,2,1],其和为 6。

解决该问题的常用算法包括暴力算法、分治算法和动态规划算法。其中,动态规划算法是最为常用和高效的算法。

具体实现时,我们可以定义两个变量 max_sum 和 cur_sum,其中 max_sum 存储当前最大子数组和,cur_sum 存储当前连续子数组的和。遍历整个数组,每遍历到一个元素,就将其添加到 cur_sum 中,并与 max_sum 进行比较。如果 cur_sum 大于 max_sum,则更新 max_sum。

在遍历完成后,max_sum 即为整个数组中最大子数组的和。这个算法的时间复杂度为 O(n),可以满足大部分实际应用场景的需求。

在这里插入图片描述

一、C 实现 最大子数组和问题 及代码详解

最大子数组和问题,即在一个数列中,找到一个子数组(连续的一段数列),使得其和最大。这个问题可以使用动态规划、分治法、暴力枚举等方法进行求解。下面是使用动态规划的 C 语言代码实现:

#include <stdio.h>

int maxSubArray(int* nums, int numsSize){
    int maxSum = nums[0];
    int curSum = nums[0];
    for (int i = 1; i < numsSize; i++) {
        curSum = (curSum > 0) ? curSum + nums[i] : nums[i];
        maxSum = (curSum > maxSum) ? curSum : maxSum;
    }
    return maxSum;
}

int main()
{
    int nums[] = {-2, 1, -3, 4, -1, 2, 1, -5, 4};
    int numsSize = sizeof(nums) / sizeof(nums[0]);
    int max_sum = maxSubArray(nums, numsSize);
    printf("Max subarray sum is %d\n", max_sum);
    return 0;
}

代码解析:

在函数 maxSubArray 中,定义了两个变量 maxSumcurSum,分别表示当前最大子数组和和当前子数组和。这两个变量的初始值都设为数组的第一个元素 nums[0]

然后从数组的第二个元素开始遍历,计算以当前元素结尾的最大子数组和。如果 curSum > 0,则将当前元素加入到子数组中;否则从当前元素重新开始计算子数组。每次更新完 curSum 都要判断是否比当前最大子数组和 maxSum 更大,若是则更新 maxSum。最后返回 maxSum 即可。

在主函数中,定义了一个 nums 数组,并通过 sizeof(nums) / sizeof(nums[0]) 计算数组的长度。调用 maxSubArray 函数,得到最大子数组和,并打印输出。

运行结果为:

Max subarray sum is 6

即最大子数组和为 6。

在这里插入图片描述

二、C++ 实现 最大子数组和问题 及代码详解

问题描述

给定一个整数数组,找到一个具有最大和的子数组,返回其最大和。

输入: [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路分析

我们可以通过动态规划来解决这个问题,定义一个变量 max_sum 来记录最大和,另外再定义一个变量 sum 来表示当前所遍历到的子序列和。

对于数组中的每一个元素,若 sum 大于 0,说明前面的子序列和对 sum 有增益作用,所以 sum 保留并加上当前元素;如果 sum 小于等于 0,则说明前面的子序列和对 sum 无增益作用,所以 sum 直接更新为当前元素。

每次比较 sum 和 max_sum 的大小,如果 sum 大于 max_sum,则更新 max_sum。

代码实现

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int max_sum = INT_MIN;
        int sum = 0;
        for(int i = 0; i < nums.size(); i++) {
            if(sum > 0) {
                sum += nums[i];
            } else {
                sum = nums[i];
            }
            max_sum = max(max_sum, sum);
        }
        return max_sum;
    }
};

时间复杂度:O(n),只需遍历一遍数组即可。

空间复杂度:O(1),只需常数级别的额外空间。

在这里插入图片描述

三、Java 实现 最大子数组和问题 及代码详解

问题描述:

给定一个整数数组,找到一个具有最大和的连续子数组,返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为 6。

解题思路:

这是一个典型的动态规划问题,我们可以定义一个数组 dp 来存储以 i 结尾的最大子数组和,然后从头到尾遍历一遍数组,更新 dp 数组中的最大值即可。

具体地说,我们可以按照以下方式更新 dp 数组:

  • 当 dp[i-1] > 0 时,dp[i] = dp[i-1] + nums[i];
  • 当 dp[i-1] ≤ 0 时,dp[i] = nums[i]。

时间复杂度为 O(n),其中 n 是数组的长度。

Java 代码实现:

public int maxSubArray(int[] nums) {
    int n = nums.length;
    int[] dp = new int[n];
    dp[0] = nums[0];
    int res = dp[0];
    for (int i = 1; i < n; i++) {
        dp[i] = Math.max(dp[i - 1], 0) + nums[i];
        res = Math.max(res, dp[i]);
    }
    return res;
}

在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值