这里写目录标题
一、召回阶段
1.1基于热门的召回
筛选用户播放歌曲的行为数据,
选取播放次数最多的歌曲作为热门歌曲,为每个用户进行推荐
1.2基于用户分群的召回
将用户划分为细粒度群体,为每一个用户群体筛选歌
曲播放行为,选取每个群体中的热门歌曲,为每一个
用户进行推荐
可以使用KMeans等聚类算法
1.3基于协同过滤的召回
二、协同过滤算法(计算相似的一种方式)
2.1基于用户(user-based)的协同过滤算法
首先计算用户与用户之间的相似性,
然后再计算其他与目标相似的用户对物品的评分来为目标用户推荐
2.2基于物品的(item-based)的协同过滤算法
与基于用户的协同过滤算法基本相似
2.3基于模型(model-based)的协同过滤算法
SVD矩阵分解协同过滤算法
LFM隐含语义协同过滤算法
ALS交替最小二乘协同过滤算法
三、协同过滤
依赖用户行为数据
分析用户行为数据,求出
用户与用户之间的相似度,进而通过相似度计算出用户对所有物品的”感兴趣程度”(user-based)
物品与物品之间的相似度,进而通过相似度计算出用户对所有物品的”感兴趣程度”(item-based)
中间矩阵,进而通过中间矩阵计算出用户对所有物品的”感兴趣程度”(model-based)
四、基于用户的协同过滤
根据用户行为数据,获取用户对物品的喜欢程度评分,同时用户无法对所有物品都进行评分,最终可组织成一个用户-物品稀疏矩阵
计算用户之间的相似程度,通过用户向量,按照余弦相似度公式进行求解
上面是向量点积
上面是是向量的模积
将用户一看出一个向量u1=[4.5,3,3.5,0,4,0];
将用户二看成一个向量u2=[0,4.5,5,0,0,4,0];
用户没有对物品进行评分回默认为0,但是可以对默认的没有评分的物品用平均数代替
余弦相似度的scala代码实现:
object cosine_similarity {
//向量的模
def module(vec: Vector[Double]