一、U-Net概念
U-Net是2015年提出的用于生物图像分割的网络,并在当时取得了冠军。U-net 是基于FCN的一一个语义分割网络,主要用于医学图像的分割。
u-net分为两个部分,一个是特征提取部分,一个是上采样部分。特征提取部分先进行两次的卷积,之后经过4次下采样。特征提取部分,每经过一个池化层就一个尺度, 包括原图尺度一共有5个尺度。上采样部分,每上采样一次, 就和特征提取部分对应的通道数相同尺度拼接,经过4次相同的操作,但是拼接之前要将其crop。之后经过两次卷积,最后经过1*1的卷积得到分割结果。
二、卷积层
卷积相当于一个滑动窗口,在特征图上进行滑动,并计算。把卷积核覆盖到特征层上,卷积核上的值与特征层的值相乘然后相加得到卷积结果。卷积的目的是为了进行特征提取。
步长:所谓的步长就是控制卷积核移动的距离。
对多维的特征矩阵进行卷积操作,假如输入一张RGB的彩色图像,那么有RGB 3个分量。卷积核的深度要保持一致,所以也要是3维。然后将卷积核的每一个维度放到对应的维度上进行滑动卷积,最后进行求和操作,就得到了输出矩阵。输出的深度与卷积核的个数相同。
**