U-Net学习总结

本文介绍了U-Net模型在生物图像分割中的应用,该模型由特征提取和上采样两部分构成,结合卷积层、池化层和激活函数等组件。讨论了卷积的作用、激活函数的功能以及池化层的目的。同时,概述了过拟合和欠拟合的概念以及损失函数在模型评估中的作用。
摘要由CSDN通过智能技术生成

一、U-Net概念
U-Net是2015年提出的用于生物图像分割的网络,并在当时取得了冠军。U-net 是基于FCN的一一个语义分割网络,主要用于医学图像的分割。
在这里插入图片描述
u-net分为两个部分,一个是特征提取部分,一个是上采样部分。特征提取部分先进行两次的卷积,之后经过4次下采样。特征提取部分,每经过一个池化层就一个尺度, 包括原图尺度一共有5个尺度。上采样部分,每上采样一次, 就和特征提取部分对应的通道数相同尺度拼接,经过4次相同的操作,但是拼接之前要将其crop。之后经过两次卷积,最后经过1*1的卷积得到分割结果。
二、卷积层
卷积相当于一个滑动窗口,在特征图上进行滑动,并计算。把卷积核覆盖到特征层上,卷积核上的值与特征层的值相乘然后相加得到卷积结果。卷积的目的是为了进行特征提取。
步长:所谓的步长就是控制卷积核移动的距离。
在这里插入图片描述

对多维的特征矩阵进行卷积操作,假如输入一张RGB的彩色图像,那么有RGB 3个分量。卷积核的深度要保持一致,所以也要是3维。然后将卷积核的每一个维度放到对应的维度上进行滑动卷积,最后进行求和操作,就得到了输出矩阵。输出的深度与卷积核的个数相同。

**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值