1. U-Net基础架构回顾
首先,了解UNet++之前,我们需要简要回顾U-Net的架构。U-Net是一种经典的卷积神经网络(CNN),专门为语义分割任务设计。它的架构由两部分组成:
- 编码器(Contracting Path):逐步下采样,通过卷积层和池化层提取高层次的特征。
- 解码器(Expansive Path):逐步上采样,将低层次的特征图恢复到原始图像大小,通过跳跃连接将编码器的特征与解码器的特征图融合。
U-Net的跳跃连接(Skip Connections)确保了低级别的特征能够传递到解码器,帮助网络恢复图像细节。这使得U-Net在医学图像分割等任务中表现出色。
2. UNet++的创新
UNet++对U-Net进行了重要改进,主要体现在以下几个方面:
2.1 密集跳跃连接(Dense Skip Pathways)
在传统的 U-Net 中,每一层的编码器和解码器之间通过单一的跳跃连接传递信息。而在UNet++中,引入了多种不同层之间的密集跳跃连接。具体来说,UNet++在解码器的每一层都从多个编码器层接收信息,而不是仅仅依赖于最直接的跳跃连接。
- 这种改进允许网络在不同尺度的特征之间进行更高效的信息传递。
- 密集跳跃连接使得特征能够以更丰富的方式组合,从而增强了网络对局部和全局特征的建模能力。