自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 用线性变换的角度理解凹凸贴图/法线贴图

关于线性变换的文章可以看我的上一篇文章:https://editor.csdn.net/md/?articleId=124002035本文章不会介绍什么是凹凸贴图/法线贴图。这里有讲什么是凹凸贴图:https://learnopengl-cn.github.io/05%20Advanced%20Lighting/04%20Normal%20Mapping/切线空间切线空间就是T,B,N三个向量构成的向量空间,如果你不理解什么是向量空间,那理解成[T,B,N]矩阵即可。T,B,N是什么?一个模型的

2022-04-06 23:18:07 94

原创 用线性变换的角度理解旋转

线性变换是理解线性代数的一种几何角度。从几何上讲解线性代数的比较好的视频:https://www.bilibili.com/video/BV1ys411472E这是learnOpenGL上的旋转矩阵。我们当然可以用设变量,求方程的方法得出这些矩阵,但这里有一个几何的直观解释。向量由三轴基向量组成,比如(3,1,2)=3(1,0,0)+(0,1,0)+2(0,0,1)。我们观察线性变换对它的影响可以变成线性变换对轴基向量的影响,即观察对x轴(1,0,0),y轴(0,1,0),z轴(0,0,1)的影响。

2022-04-06 22:32:50 726

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除