线性变换是理解线性代数的一种几何角度。从几何上讲解线性代数的比较好的视频:https://www.bilibili.com/video/BV1ys411472E
这是learnOpenGL上的旋转矩阵。我们当然可以用设变量,求方程的方法得出这些矩阵,但这里有一个几何的直观解释。
向量由三轴基向量组成,比如(3,1,2)=3(1,0,0)+(0,1,0)+2(0,0,1)。我们观察线性变换对它的影响可以变成线性变换对轴基向量的影响,即观察对x轴(1,0,0),y轴(0,1,0),z轴(0,0,1)的影响。
以沿x轴旋转θ角为例:
(1,0,0):无变换,故还是(1,0,0)
(0,1,0):旋转后在x轴的分量为0,在y轴的分量为cosθ,在z轴的分量为sinθ
(0,0,1):旋转后在x轴的分量为0,在y轴的分量为-sinθ,在z轴的分量为cosθ
综上所述,这个矩阵便是: