用线性变换的角度理解旋转

线性变换是理解线性代数的一种几何角度。从几何上讲解线性代数的比较好的视频:https://www.bilibili.com/video/BV1ys411472E

在这里插入图片描述

这是learnOpenGL上的旋转矩阵。我们当然可以用设变量,求方程的方法得出这些矩阵,但这里有一个几何的直观解释。

向量由三轴基向量组成,比如(3,1,2)=3(1,0,0)+(0,1,0)+2(0,0,1)。我们观察线性变换对它的影响可以变成线性变换对轴基向量的影响,即观察对x轴(1,0,0),y轴(0,1,0),z轴(0,0,1)的影响。

以沿x轴旋转θ角为例:

(1,0,0):无变换,故还是(1,0,0)

(0,1,0):旋转后在x轴的分量为0,在y轴的分量为cosθ,在z轴的分量为sinθ

(0,0,1):旋转后在x轴的分量为0,在y轴的分量为-sinθ,在z轴的分量为cosθ

综上所述,这个矩阵便是:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值