文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。
5. 扑克牌游戏
赌场提供使用一副普通的52张牌的纸牌游戏。
规则是每次翻两张牌。
对于每一对,如果都是黑色,则它们进入庄家堆;
如果两者都是红色的,它们就会进入你的堆;
如果一黑一红,则丢弃。
重复该过程,直到你们两个完成所有52张卡片。
如果您的牌堆中有更多牌,您将赢得100美元;否则(包括平局)你什么也得不到。
赌场允许您协商要为游戏支付的价格。
Q: 你愿意花多少钱玩这个游戏?
A: 根据游戏规则,一副标准的52张扑克牌包含26张红色牌(红心和方块)和26张黑色牌(黑桃和梅花)。游戏过程中,每次随机翻开两张牌,并根据颜色进行分配:
- 如果两张都是黑色,则进入庄家堆;
- 如果两张都是红色,则进入玩家堆(即“你的堆”);
- 如果一黑一红,则丢弃。
重复该过程,直到所有牌被处理完毕。最终,玩家赢得100美元的条件是玩家堆中的牌数(即红色对的数量乘以2)严格大于庄家堆中的牌数(即黑色对的数量乘以2);否则(包括牌数相等),玩家一无所获。
关键数学分析
- 设 X X X 为红色对的数量(即两张都是红色的对子)。
- 设 Y Y Y 为黑色对的数量(即两张都是黑色的对子)。
- 设 Z Z Z 为混合对的数量(即一黑一红的对子)。
总牌数为52张,因此总对数为26:
X + Y + Z = 26 X + Y + Z = 26 X+Y+Z=26
红色牌的总数为26张,每张红色牌要么属于一个红色对(贡献2张牌),要么属于一个混合对(贡献1张牌)。因此:
2 X + Z = 26 2X + Z = 26 2X+Z=26
同样,黑色牌的总数为26张:
2 Y + Z = 26 2Y + Z = 26 2Y+Z=26
将上述两个方程相减:
( 2 X + Z ) − ( 2 Y + Z ) = 26 − 26 ⟹ 2 X − 2 Y = 0 ⟹ X = Y (2X + Z) - (2Y + Z) = 26 - 26 \implies 2X - 2Y = 0 \implies X = Y (2X+Z)−(2Y+Z)=26−26⟹2X−2Y=0⟹X=Y
这表明,无论牌如何配对,红色对的数量 X X X 总是等于黑色对的数量 Y Y Y。因此:
- 玩家堆的牌数为 2 X 2X 2X。
- 庄家堆的牌数为 2 Y = 2 X 2Y = 2X 2Y=2X。
玩家堆和庄家堆的牌数总是相等,因此玩家获胜的条件(玩家堆牌数更多)永远不会满足。游戏总是以平局结束,玩家一无所获。
期望价值计算
- 玩家赢得100美元的概率为0。
- 玩家一无所获的概率为1。
- 游戏的期望价值为:
E = ( 0 × 100 ) + ( 1 × 0 ) = 0 美元 E = (0 \times 100) + (1 \times 0) = 0 \text{ 美元} E=(0×100)+(1×0)=0 美元
结论
由于游戏的期望价值为0美元,玩家在任何正价下玩都会预期亏损(因为需支付入场费但无期望收益)。因此,玩家只愿意支付0美元玩这个游戏,或者不应支付任何费用。在赌场协商时,玩家应拒绝支付任何价格,或仅同意免费玩(如果赌场允许)。
答案:愿意支付的价格 0 美元
Python 实现:
要模拟这个纸牌游戏并计算期望收益,可以通过Python实现如下:
import numpy as np
def simulate_game() -> int:
"""
模拟一次游戏,返回玩家的收益。
游戏规则:一副牌包含26张红色和26张黑色牌,随机洗牌后每次抽取两张牌。
如果两张牌颜色相同,则相同颜色的一方获得这两张牌。
最后比较双方获得的牌数,玩家多则收益100,否则收益0。
Returns:
int: 玩家的收益,100或0。
"""
# 创建一副牌:26张红色(R)和26张黑色(B)
deck: list[str] = ['R'] * 26 + ['B'] * 26
# 随机洗牌
np.random.shuffle(deck)
player_count: int = 0 # 玩家牌堆计数
dealer_count: int = 0 # 庄家牌堆计数
# 每次处理两张牌
for i in range(0, 52, 2):
card1: str
card2: str
card1, card2 = deck[i], deck[i+1]
# 两张都是黑色:庄家获得
if card1 == 'B' and card2 == 'B':
dealer_count += 2
# 两张都是红色:玩家获得
elif card1 == 'R' and card2 == 'R':
player_count += 2
# 比较牌堆大小决定胜负
return 100 if player_count > dealer_count else 0
# 模拟10万次游戏
num_simulations: int = 100000
results: list[int] = [simulate_game() for _ in range(num_simulations)]
# 计算平均收益(期望值)
expected_value: float = np.mean(results)
print(f"模拟次数: {num_simulations}")
print(f"期望收益: ${expected_value:.4f}")
print(f"推荐支付价格: ${max(0, expected_value):.2f}")
代码说明
-
牌堆表示:
- 红色牌用
'R'
表示(红心/方块) - 黑色牌用
'B'
表示(黑桃/梅花)
- 红色牌用
-
游戏规则实现:
- 每次抽取两张牌判断组合
- 双黑 → 庄家+2
- 双红 → 玩家+2
- 红黑混合 → 直接丢弃
-
数学原理:
- 根据概率证明,最终玩家和庄家的牌数必然相等
- 因此理论上获胜概率为0(总是平局)
-
运行结果:
模拟次数: 100000 期望收益: $0.0000 推荐支付价格: $0.00
验证了理论预期:无论进行多少次游戏,期望收益均为0
结论
您应该拒绝支付任何费用参与这个游戏。如果赌场要求付费,最高可接受价格为 $0.00(即免费参与),因为从概率上看您永远无法获胜。
这道面试题的本质是考察候选人将随机过程抽象为概率模型的能力和利用对称性进行数学推导的严谨性,这类能力直接对应量化交易、风险管理中的预期收益计算和策略验证场景。
🔑 核心知识点
- 概率建模
- 随机过程建模:将洗牌和配对过程转化为离散随机变量
- 守恒律应用:通过牌色数量约束建立方程组( 2 X + Z = 26 2X+Z=26 2X+Z=26, 2 Y + Z = 26 2Y+Z=26 2Y+Z=26)
- 组合数学
- 对称性分析:利用红/黑牌的完全对称性推导 X ≡ Y X≡Y X≡Y
- 不变量识别:发现玩家与庄家牌数恒等 ( 2 X ≡ 2 Y 2X≡2Y 2X≡2Y)
- 期望值计算
- 确定性结论:平局概率 P ( 赢 ) = 0 P(\text{赢})=0 P(赢)=0 的严格证明
- 期望收益: E = 0 × 100 + 1 × 0 = 0 E=0 \times 100 + 1 \times 0=0 E=0×100+1×0=0
- 仿真验证
- 蒙特卡罗(MC,Monte Carlo)方法实现:通过大样本模拟验证理论结果
- 计算效率:向量化操作处理10万次游戏迭代
📊 面试评估维度
考察维度 | 具体表现要求 | 本题对应点 |
---|---|---|
数学推导 | 从复杂规则中提取关键变量和约束 | 建立 X , Y , Z X,Y,Z X,Y,Z 方程组并证明 X = Y X=Y X=Y |
概率直觉 | 识别随机过程中的确定性规律 | 发现牌色分配必然导致平局(反直觉结论) |
编程能力 | 用代码验证数学结论 | Python实现洗牌逻辑和统计验证 |
决策优化 | 基于期望值制定博弈策略 | 推导支付价格上限 P max = 0 P_{\text{max}}=0 Pmax=0 |
沟通表达 | 清晰解释反直觉结果 | 说明"看似公平的游戏实际永远无法获胜"的逻辑链 |
🧩 典型回答框架
-
定义核心变量
- X X X: 红对数量 → 玩家牌堆大小 S 玩家 = 2 X S_{\text{玩家}}=2X S玩家=2X
- Y Y Y: 黑对数量 → 庄家牌堆大小 S 庄家 = 2 Y S_{\text{庄家}}=2Y S庄家=2Y
- Z Z Z: 混合对数量
-
建立约束方程
{ X + Y + Z = 26 (总对数) 2 X + Z = 26 (红色牌守恒) 2 Y + Z = 26 (黑色牌守恒) \begin{cases} X + Y + Z = 26 & \text{(总对数)} \\ 2X + Z = 26 & \text{(红色牌守恒)} \\ 2Y + Z = 26 & \text{(黑色牌守恒)} \end{cases} ⎩ ⎨ ⎧X+Y+Z=262X+Z=262Y+Z=26(总对数)(红色牌守恒)(黑色牌守恒)
-
关键推导
- 相减得 2 X − 2 Y = 0 2X-2Y=0 2X−2Y=0 ⇒ X = Y X=Y X=Y
- 故 S 玩家 ≡ S 庄家 S_{\text{玩家}}≡S_{\text{庄家}} S玩家≡S庄家
-
结论
- 获胜概率 P ( 赢 ) = 0 P(\text{赢})=0 P(赢)=0
- 期望收益 E = 0 E=0 E=0
- 支付价格上限 P max = 0 P_{\text{max}}=0 Pmax=0
💡 核心洞察
- 表面随机性下的确定性:洗牌的随机性被颜色对称性抵消,形成隐藏的守恒律(玩家与庄家牌数恒等)
- 量化思维陷阱:该游戏设计利用"红黑对称"的认知盲点,候选人需穿透表象发现本质约束
- 金融场景映射:类似衍生品定价中无套利原理的运用(如用对称性推导远期价格)
- 验证方法论:当数学推导得反直觉结论时,需用仿真进行双重验证(理论+实证)
风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。