浅谈Vision Transformer

Vision Transformer(ViT)的模型框架如下图:

第一步: 使用ViT实现图片分类,首先需将图片分割成不同的块(Patches);

第二步:向量化,将各个张量拉伸成向量。假如每个Patch对应的张量的形状为(3,16,16),对应向量的形状为(1,768),对应二维矩阵[num_token, token_dim]。原图被分割为n个Patch,就能得到向量x1~xn。

第三步:在输入Transformer Encoder之前注意需要加上[class]token以及Position Embedding。

使用一个不包含激活函数的全连接层对x1~xn进行线性变换,其中n个全连接层共享参数。

因为Attention是没有学习顺序信息的能力的,对图片每一个Patch的位置做编码。其中transformer的位置编码是用三角函数直接算出来的。

在刚刚得到的一堆tokens中插入一个专门用于分类的[class]token,这个[class]token是一个可训练的参数,数据格式和其他token一样都是一个向量,以ViT-B/16为例,就是一个长度为768的向量,与之前从图片中生成的tokens拼接在一起。

 第四步:Transformer Encoder。Transformer Encoder其实就是重复堆叠Encoder Block L次。

 

在这里用代码来解释以下Encoder Block。

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

class MultiHeadSelfAttention(layers.Layer):
    def __init__(self, embed_dim, num_heads=8):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        if embed_dim % num_heads != 0:
            raise ValueError(
                f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
            )
        self.projection_dim = embed_dim // num_heads
        self.query_dense = layers.Dense(embed_dim)
        self.key_dense = layers.Dense(embed_dim)
        self.value_dense = layers.Dense(embed_dim)
        self.combine_heads = layers.Dense(embed_dim)

    def attention(self, query, key, value):
        score = tf.matmul(query, key, transpose_b=True)
        dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
        scaled_score = score / tf.math.sqrt(dim_key)
        weights = tf.nn.softmax(scaled_score, axis=-1)
        output = tf.matmul(weights, value)
        return output, weights
    def separate_heads(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
        return tf.transpose(x, perm=[0, 2, 1, 3])
    def call(self, inputs):
        # x.shape = [batch_size, seq_len, embedding_dim]
        batch_size = tf.shape(inputs)[0]
        # 计算原始的Q,K,V矩阵
        query = self.query_dense(inputs)  # (batch_size, seq_len, embed_dim)
        key = self.key_dense(inputs)  # (batch_size, seq_len, embed_dim)
        value = self.value_dense(inputs)  # (batch_size, seq_len, embed_dim)
        # 进行切分,得到多头
        query = self.separate_heads(
            query, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        key = self.separate_heads(
            key, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        value = self.separate_heads(
            value, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        # 注意力计算
        attention, weights = self.attention(query, key, value)
        attention = tf.transpose(
            attention, perm=[0, 2, 1, 3]
        )  # (batch_size, seq_len, num_heads, projection_dim)
        # 多个头进行拼接
        concat_attention = tf.reshape(
            attention, (batch_size, -1, self.embed_dim)
        )  # (batch_size, seq_len, embed_dim)
        output = self.combine_heads(
            concat_attention
        )  # (batch_size, seq_len, embed_dim)
        return output
class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super(TransformerBlock, self).__init__()
        self.att = MultiHeadSelfAttention(embed_dim, num_heads)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs, training):
        # 对应文章中的第2部分
        attn_output = self.att(inputs)
        attn_output = self.dropout1(attn_output, training=training)
        # 对应文章中的第3部分
        out1 = self.layernorm1(inputs + attn_output)
        # 对应文章中的第4部分
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)

第五步:MLP Head。需要提取出[class]token生成的对应结果 。

 MLP Head采用普通的全连接层即可实现。

最后附上ViT-B/16的图解:

 

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Vision Transformer(ViT)是一种基于Transformer架构的深度学习模型,用于处理计算机视觉任务。它将图像分割成一系列的图像块,并将每个图像块作为输入序列传递给Transformer编码器。每个图像块通过一个线性投影层转换为向量表示,并与位置嵌入向量相结合,然后输入到Transformer编码器中进行处理。Transformer编码器由多个自注意力层和前馈神经网络层组成,用于学习图像中的全局和局部特征。最后,通过一个线性分类器对编码器的输出进行分类。 Vision Transformer的优点是能够在没有使用传统卷积神经网络的情况下,实现对图像的高质量特征提取和分类。它在一些计算机视觉任务上取得了与传统方法相媲美甚至更好的性能,例如图像分类、目标检测和语义分割等任务。 以下是一个使用Vision Transformer进行图像分类的示例代码[^1]: ```python import torch import torch.nn as nn from torchvision import transforms from torchvision.models import resnet50 from vit_pytorch import ViT # 加载预训练的Vision Transformer模型 model = ViT( image_size = 224, patch_size = 16, num_classes = 1000, dim = 768, depth = 12, heads = 12, mlp_dim = 3072, dropout = 0.1, emb_dropout = 0.1 ) # 加载预训练的权重 model.load_from('vit_weights.pth') # 图像预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载图像并进行预处理 image = Image.open('image.jpg') image = transform(image).unsqueeze(0) # 使用Vision Transformer进行图像分类 output = model(image) _, predicted_class = torch.max(output, 1) # 输出预测结果 print('Predicted class:', predicted_class.item()) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值