链路预测的评估指标

1. 基于排名的指标

AUC (Area Under the ROC Curve)

衡量模型区分正负样本的能力,AUC值越高,性能越好。

Precision@k

预测排名前k的边中正确预测的比例。

Average Precision (AP)

综合考虑不同k值下的Precision,反映整体预测质量。

Mean Reciprocal Rank (MRR)

计算正确预测的倒数排名均值,值越大,性能越好。

2. 基于分类的指标

Accuracy

正确预测的边占总预测边的比例。

Precision

预测为正类的边中实际为正类的比例。

Recall (Sensitivity)

实际为正类的边中被正确预测的比例。

F1-Score

Precision和Recall的调和平均数,平衡两者。

3. 基于概率的指标

Log-Loss (Logarithmic Loss)

衡量预测概率与实际标签的差异,值越小,性能越好。

Brier Score

预测概率与实际结果之间差异的平方均值,值越小,性能越好。

4. 其他指标

Hit Rate

正确预测的边占所有边的比例。

Mean Average Precision (MAP)

对多个查询的平均精度取平均,常用于推荐系统。

5. 基于图的指标

Edge Overlap

预测边与实际边的重叠比例。

Common Neighbors

预测边与实际边共享邻居节点的比例。

6. 时间相关指标

Temporal AUC

考虑时间因素的AUC,适用于动态图。

Temporal Precision@k

考虑时间因素的Precision@k。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值