价格时序预测-LSTM

LSTM原理

LSTM是一种有监督神经网络。在普通的RNN模块里增加一个“短期记忆”模块,使得神经网络能够对基于“很久之前”曾经看到过并重复出现的“时域特征片段”作出预测上的修正。一个简单的应用是利用文本里的相距比较远的“上下文”作更好的文本分析。

LSTM是最新的受到广泛应用的有监督神经网络之一。

LSTM基本使用原理

(以下的表述基于Keras里的LSTM layer)

  • 一个Episode里的收敛性&Overfitting(Underfitting)可以用Valiation Data Set来检查。在fit时,指定一个1/3的validation_split。
  • 网络的表达能力(层数&每层节点数)需要和数据量匹配,否则非常容易出现Overfitting。LSTM的“表达能力”非常出众。同时还要用Dropout来控制LSTM疯狂的表达能力。

Pseudo Trading

回测中需要有个交易规则。我使用的是相邻两个Candle的Close Price,p0, p1,其中p1是预测的未来价格。如果p1>p0,则buy@p0,并且在下一个时刻sell@p1*,其中p1*是真实价格。反之如是。

忽略所有滑点和手续费。

Keras LSTM Layer使用结果

单层LSTM,128个节点,使用MinMaxScaler, Early-exit, Dropout。模型越简单越好。数据为5分钟BTC/USD交易历史数据,提取OHLCV以及ATR等一共9个Features作为LSTM输入,输出为价格。注意,Deep Learning (DL)本身是随机算法,所以即使是in-sample回测,也是有随机性。但是,In-sample的 Agg. Returns明显是too good to be true,不可能是真实交易。

从Out-of-Sample结果看,LSTM训练的模型是有能力beat the market的。在统计套利方面,还是有很强的实用性。LSTM很适合小资金投资者使用,因为成本很低,结果不错。

为LSTM提供数据时,要考虑Feature的选择,比如BTC这样几乎就是没有基本面,完全是动量交易驱动,那么选择的Feature可以很简单,比如ATR,EMA等等常用的指标都很有效。但是,如果交易 APPL或者GOOG,那就需要其他Reference数据,因为这些大公司的股价对基本面数据是有很强的依赖。

同时,数据的时间尺度也要考虑。5分钟的波动有可能无法cover taker手续费,所以可以考虑小时级别的交易,或者等待波动大的时候开启交易。

In-Sample结果

请添加图片描述在这里插入图片描述

Out-of-Sample结果

只展示两个时间段作为示范。其中第一个时间段跑了两次回测,展示出算法的随机性。使用时需要考虑是否要voting algo的“加持”。

请添加图片描述

请添加图片描述
在这里插入图片描述

请添加图片描述在这里插入图片描述

【待续】

  • 21
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值