Stable Diffusion出图时,一次性比较多个lora的效果?

事前准备

        在WebUI中,lora插件(也算是模型)的存放位置为:

你的WebUI启动器根目录\models\Lora

        把训练好的,或者下载到的模型放到这个文件夹。

        重启WebUI之后就会出现在这里

        在Lora标签中

        注意:这些lora需要有相同的命名规律,就是命名有规律,什么规律都行

开始操作

1 先填写提示词

2 在lora标签左键点选一个lora 

3 发现提示词输入区域多出了一个lora标签

4 分析ora标签的规律

        在我的例子中,我填入的是<lora:XiboBird-000002:1>

        同时分析其他lora的名称规律:

                XiboBird-000002

                XiboBird-000004

                XiboBird-000006

                XiboBird-000008

                XiboBird-000010

                XiboBird-000012

                XiboBird-000014

                XiboBird-000016

                XiboBird-000018

       总结:把-000002分别替换成-0000XX即可。(XX表示任意数字)

5 在脚本设置中选择X/Y/Z plot

6 启用X轴 

选择X轴类型:Prompt S/R

        即提示词搜索 / 替换,(Search / Replace)。

X轴的值: -000002,-000004,-000006,-000008,-000010,-000012,-000014,-000016,-000018

        即搜索我输入的提示词中的-000002,然后分别替换为-000004,-000006,-000008,-000010,-000012,-000014,-000016,-000018。

7 点击生成 启动 !(生成图片坐等出图)

### 如何在Stable Diffusion中使用两个LoRA模型 为了在同一间内利用多个低秩适应(Low-Rank Adaptation, LoRA)模型来增强或改变Stable Diffusion的行为,可以采用组合不同LoRA权重的方法。这种方法允许用户通过调整各个LoRA模块的影响程度,从而实现更精细的艺术风格控制或是概念融合。 当加载两个LoRA模型,通常的做法是在配置文件或者命令行参数中指定这两个预训练好的LoRA权重路径,并设置相应的比例因子用于调节各自贡献度。具体操作取决于使用的特定版本的Stable Diffusion以及其接口设计[^1]。 对于某些实现了多LoRA支持的应用程序而言,可能还提供了形界面选项让用户直观地选择想要应用的一个或多个人物角色、艺术流派或者其他自定义特征向量。然而,在大多数情况下,这涉及到修改启动脚本中的环境变量或者是编辑`.yaml`配置文件以包含额外的LoRA资源链接及其对应的强度系数。 下面是一个简单的Python代码片段展示如何编程方式加载并混合两个不同的LoRA模型: ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained( "path/to/base/model", lora_weights=["path/to/lora_model_1.safetensors", "path/to/lora_model_2.safetensors"], lora_scale=[0.75, 0.25], # Adjust these values based on desired effect balance between both models. ) image = pipeline(prompt="your prompt here").images[0] image.save("output_image.png") ``` 此段代码展示了如何创建一个基于基础模型之上叠加了两层LoRA微调后的管道实例,并指定了每种风格所占的比例。请注意实际部署环境中具体的API名称可能会有所不同;上述例子仅作为示意用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CCSBRIDGE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值