ControlNet v1.1 - OpenPose模型说明


📘 模型说明卡:ControlNet v1.1 - OpenPose

模型名称control_v11p_sd15_openpose
作者:Lvmin Zhang, Maneesh Agrawala
平台:Hugging Face
许可证CreativeML OpenRAIL M
论文引用arXiv:2302.05543


🔍 简介

   control_v11p_sd15_openpose 是 ControlNet v1.1 系列中基于 OpenPose 人体姿态估计图像 训练的控制模型。可与 Stable Diffusion v1.5 搭配使用,通过“骨架提示图(keypoint map)”进行强力的人体姿态控制。

        适用于人体换装、动态一致性图生图、动作还原、动漫角色动态生成等场景。


🧠 模型原理组成(简略版)

        ControlNet 的结构在原始 Stable Diffusion 模型基础上添加了一个条件分支,接收额外的“控制图”输入。该版本使用的是 OpenPose 骨架图(keypoints) 作为条件引导。


🧾 模型权重版本选择对比

文件名精度格式文件大小推荐用途
diffusion_pytorch_model.fp16.safetensorsFP16Safetensors723 MB推荐推理使用(快、显存小)
diffusion_pytorch_model.safetensorsFP32Safetensors1.45 GB推荐高精度需求/兼容性调试
diffusion_pytorch_model.fp16.binFP16PyTorch723 MB可选,格式较旧
diffusion_pytorch_model.binFP32PyTorch1.45 GB可选,不推荐新项目使用

📥 下载命令(使用 HuggingFace 镜像)

✅ 下载推荐版本(半精度 safetensors):
wget -O control_v11p_sd15_openpose.safetensors "https://hf-mirror.com/lllyasviel/control_v11p_sd15_openpose/resolve/main/diffusion_pytorch_model.fp16.safetensors?download=true"
✅ 下载全精度 safetensors 版本:
wget -O control_v11p_sd15_openpose_fp32.safetensors "https://hf-mirror.com/lllyasviel/control_v11p_sd15_openpose/resolve/main/diffusion_pytorch_model.safetensors?download=true"

📁 推荐存放路径(以 ComfyUI 为例)

/ComfyUI/models/controlnet/control_v11p_sd15_openpose.safetensors

你可以将两个版本分别命名为:

  • control_v11p_sd15_openpose.safetensors(fp16)

  • control_v11p_sd15_openpose_fp32.safetensors(fp32)


🧪 使用建议(Diffusers 示例)

from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
from controlnet_aux import OpenposeDetector
from PIL import Image

controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)

image = Image.open("your_image.png").convert("RGB")
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
control_image = processor(image, hand_and_face=True)

pipe.enable_model_cpu_offload()
result = pipe("a dancer posing gracefully", image=control_image, num_inference_steps=30).images[0]
result.save("output.png")

🔗 官方资源


`control_v11p_sd15_openpose` 这个术语通常涉及到计算机视觉领域的一些技术。从字面意义上理解,“control_v11p”可能是某种控制策略版本或者是某个特定模型的一部分;“sd15”可能代表的是某种硬件平台、模型架构版本或是数据集大小;而“openpose”则是指一种开放源码的人体姿态估计工具。 **OpenPose** 是一款由 Facebook AI Research 开发的人体姿态检测工具,它可以识别图像或视频帧中的人物关键点位置,例如关节的位置等信息。它支持多种人体姿态表示方法,并可以处理各种复杂的场景和遮挡情况。OpenPose 使用了基于深度学习的神经网络架构,能够实时地对大型集合进行人体姿势分析。 如果 `control_v11p_sd15_openpose` 指代特定的应用或项目,则可能存在以下几个方面: 1. **特定版本的 OpenPose** - 可能是指某一特定版本的 OpenPose 软件库,这可能包含了针对特定硬件优化的改进或新功能。 2. **特定控制策略的实现** -control_v11p”的部分可能涉及的是如何将 OpenPose 的结果集成到控制系统中,实现更精确的动作控制或辅助决策过程。 3. **硬件与软件的结合** -sd15”可能是针对某款硬件设备的设计,如机器人、AR/VR 设备、监控摄像头等,强调了该版本特别考虑了与这种特定硬件的兼容性和性能优化。 了解具体的上下文对于确定“control_v11p_sd15_openpose”的准确含义非常关键,因为这个术语的解释会随着应用场景的不同而变化。为了提供更详细的信息,需要进一步明确这个术语是如何在特定项目或应用中使用的。 **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CCSBRIDGE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值