matlab resize 和imresize坑

本文讨论了imresize函数在调整图像尺寸时,针对普通图像和二值图的不同处理方式,强调了插值方法(如bicubic和nearest)的选择对二值掩码完整性的重要性。同时指出了Matlab中resize函数的Padding效果与imresize的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

imresize是正经图像变尺寸, 可以选变换方法,比如插值还是最近值 (nearest neighbor), 对如普通图像插值更平滑, 而二值label需要用neareast neighbor, 不然就会从0, 1变成 浮点。

图一: imresize让普通图像更大,默认方法bicubic

让我们看一下二值图, 比如给一个aa, size是 (20,20)

然后用 imresize(aa,[30,30]), 默认的还是bicubic,可以看到

二值mask已经被破坏了。

如果用imresize(aa, [30,30], 'nearest'),

结果就依然是二值, 依然是有效的二值掩码。

这一点在语义分割中一定要注意, 不少人错误的插值造成了真值掩码的错误。

而matlab中resize可以对图像或者说2D矩阵使用,但结果是Padding一样的效果,扩充右边和下边边框。用 resize(I, [1024,1024]), 可以看到是padding的效果

所以要注意matlab中imresize和resize的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值