自监督学习(十七)A critical analysis of self-supervision, or what we can learn from a single image

A critical analysis of self-supervision, or what we can learn from a single image

Introduction

本文出自牛津大学视觉几何组(Visual Geometry Group),作者在文中对现在的自监督学习方法能否有效学习到图像的特征表示了怀疑。为此,作者设计了相应的实验,发现对于网络的底层特征,即使只用一张图也可以学习地不错,但是对于高层特征,即使使用百万张图也无法获得很好的效果。因此,作者得出结论,现有的自监督学习方法还有很大的提升空间。论文地址

Method

为了验证自监督学习方法的效果,作者选用了三个比较讲点的自监督学习方法:BiGAN、RotNet和DeepCluster。(之前的博客应该都说过)。
对于训练数据,假设共有d张图像,作者对其进行了修改,挑选其中N张图像(N远远小于d),对这N张图像进行数据增广,增广为d-N张,连同之前的N张图,又组成一个d张图的数据集。这样,通过控制N的大小,就可以控制训练数据中图像的数量。

Experiments

作者做了很多组实验,在这里只放最能说明问题的一组实验,作者比较了几种自监督方法在不同层不同规模训练数据下的分类精度:
在这里插入图片描述
可以看出,对于浅层特征,即使训练数据只有一张,其分类的准确率也挺高的,甚至比使用全部训练数据的模型还要高。对于高层特征,使用大量的数据还是有作用的,但是作用没有太明显。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自我监督是一种自我学习的方法,它利用无标注的数据进行训练,并通过预测样本的一部分属性来监督自身的学习过程。通过这种方法,我们可以从单一样本中学到很多有价值的东西。 首先,自我监督使得我们能够从未标记的数据中获取信息。在传统的监督学习中,我们通常需要大量标记好的样本来进行训练,而这个过程很耗费时间和精力。而自我监督则能够利用未标记的样本,避免了手动标记的麻烦。通过预测样本的属性,我们可以从单一的未标记样本中学到很多有用的信息。 其次,自我监督可以帮助我们学习到更具有普适性的表示。在自我监督中,我们通常通过将原始样本转化为不同形式的隐藏表示来进行学习。这些隐藏表示是通过模型的预测属性而得到的。通过这种方式,我们可以学习到更具泛化能力的特征表示,使得模型能够更好地适应不同的任务和领域。 此外,自我监督还可以提供一种探索性学习的机制。通过预测样本的某些属性,我们可以刺激模型去自我探索和发现。这种方法有助于提高模型对于新任务的适应能力和自主学习能力。通过不断调整自我监督的目标,我们可以让模型从单一样本中不断提炼出新的知识和模式。 然而,自我监督也存在一些挑战和问题。首先,样本的生成过程可能会引入一些偏差和误导。如果预测的属性与样本的真实标签或目标任务不一致,那么学习到的模型可能会受到影响。其次,自我监督往往需要设计合适的预测任务和网络结构。不同的任务和网络结构可能导致不同的结果,需要进行一定的探索和实验。 综上所述,自我监督是一种有潜力的自我学习方法,通过预测样本的属性来监督学习过程。它能够从单一的未标记样本中学习到有价值的信息,提供更具泛化能力的特征表示,并增强模型的适应能力和自主学习能力。然而,自我监督也需要注意样本生成的偏差和选择合适的预测任务和网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值