NTU 课程笔记:self-supervised learning

self-supervised learning作为一种无监督学习方式,通过数据自身提供监督信号,减少对标注数据的依赖。它在预训练阶段无需标注数据,通过设置代理任务(如relative positioning, colorization, inpainting)来学习语义表示。与autoencoder不同,self-supervised learning的代理任务具有语义意义,使得模型在预训练后能捕捉到更多语义信息。在fine-tuning阶段,预训练的参数用于有标注数据的微调,提高模型性能。" 4386877,168292,Java调用SVM模型进行预测,"['Java', '机器学习', 'SVM', 'libsvm', '数据预测']
摘要由CSDN通过智能技术生成

1 为什么需要 self-supervision?

  • 为每个新的任务都创建一个新的数据集,开销是很大的
  • 有些领域标注是很稀缺的(比如医疗领域)
  • 有些领域 数据集太大,来不及标注
  • self-supervision 很像婴儿学习的方式

2 什么是self-supervison

  • A form of unsupervised learning where the data provides the supervision(用数据本身创造label)
  • In general, withhold some part of the data, and task the network with predicting it
  • The task defines a proxy loss, and the network is forced to learn what we really
    care about, e.g. a semantic representation, in order to solve it(proxy loss~~text loss)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值