《视觉SLAM十四讲》公式笔记(ch04李群与李代数)

目录

李群李代数基础

李代数的引出

李代数的定义

李代数 

李代数

指数与对数映射

SO(3) 上的指数映射

SE(3) 上的指数映射

李代数求导与扰动模型

BCH 公式与近似形式

李代数求导

李代数加法求导

扰动模型求导

SE(3) 上的李代数求导


李群李代数基础

三维旋转矩阵构成了特殊正交群 SO (3) ,而变换矩阵构成了 特殊欧氏群 SE (3)
SO(3)=\{\boldsymbol{R}\in\mathbb{R}^{3\times3}|\boldsymbol{R}\boldsymbol{R}^T=\boldsymbol{I},det(\boldsymbol{R})=1\}
\left.SE(3)=\left\{\boldsymbol{T}=\left[\begin{array}{cc}\boldsymbol{R}&\boldsymbol{t}\\\\\boldsymbol{0}^T&1\end{array}\right.\right]\in\mathbb{R}^{4\times4}|\boldsymbol{R}\in SO(3),\boldsymbol{t}\in\mathbb{R}^3\right\}

群( Group )是 一种集合 加上 一种运算 的代数结构。把集合记作 A ,运算记作 ·, 那么群可以记作 G = ( A, · ) 。群要求这个运算满足以下几个条件:
1. 封闭性 :   \forall a_1,a_2\in A,\quad a_1\cdot a_2\in A
2. 结合律 :     \forall a_1,a_2,a_3\in A,\quad(a_1\cdot a_2)\cdot a_3=a_1\cdot(a_2\cdot a_3)
3. 幺元 :   \exists a_0\in A,\quad s.t.\quad\forall a\in A,\quad a_0\cdot a=a\cdot a_0=a
4. : \forall a\in A,\quad\exists a^{-1}\in A,\quad s.t.\quad a\cdot a^{-1}=a_0
李群是指具有连续(光滑)性质的群。SO( n) 和 SE( n),它们在实数空间上是连续的。我们能够直观地想象一个刚体能够连续地在空间中运动,所以它们都是李群。

李代数的引出

考虑任意旋转矩阵 \boldsymbol{R}  满足:
RR^T=I
\boldsymbol{R} 是某个相机的旋转,它会随时间连续地变化,即为时间的函数:\boldsymbol{R}(t) ,则有:
\boldsymbol{R}(t)\boldsymbol{R}(t)^T=\boldsymbol I
在等式两边对时间求导,得到:
\dot{\boldsymbol R}(t)\boldsymbol R(t)^T+\boldsymbol R(t)\dot{\boldsymbol R}(t)^T=0
整理:
\dot{\boldsymbol R}(t)\boldsymbol R(t)^T=-\left(\dot{\boldsymbol R}(t)\boldsymbol R(t)^T\right)^T
\dot{\boldsymbol R}(t)\boldsymbol R(t)^T是一个 反对称矩阵。对于任意反对称矩阵,能找到一个与之对应的向量。把这个运算用符号 ^{\vee}  表示:
\boldsymbol{a}^{\wedge}=\boldsymbol{A}=\left[\begin{array}{ccc}0&-a_3&a_2\\\\a_3&0&-a_1\\\\-a_2&a_1&0\end{array}\right],\quad\boldsymbol{A}^{\vee}=\boldsymbol{a}
可以找到一个三维向量 \phi(t)\in\mathbb{R}^3 ,与之对应。于是有:
\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^T=\phi(t)^\wedge
等式两边右乘 \boldsymbol{R}(t)  :
\left.\dot{\boldsymbol{R}}(t)=\boldsymbol{\phi}(t)^\wedge\boldsymbol{R}(t)=\left[\begin{array}{ccc}0&-\phi_3&\phi_2\\[0.3em]\phi_3&0&-\phi_1\\[0.3em]-\phi_2&\phi_1&0\end{array}\right.\right]\boldsymbol{R}(t)
每对旋转矩阵求一次导数,只需左乘一个矩阵 \boldsymbol{\phi}(t)^\wedge 即可。在  t_0  附近,设 \phi  保持为常数 \phi(t_0)=\phi_0 ,则有:
\dot{\boldsymbol{R}}(t)=\phi(t_0)^\wedge\boldsymbol{R}(t)=\phi_0^\wedge\boldsymbol{R}(t)
由初始值 R(0)=\boldsymbol{I} ,解微分方程:
\boldsymbol{R}(t)=\exp{(\boldsymbol{\phi}_0^{\wedge}t)}

李代数的定义

每个李群都有与之对应的李代数。李代数描述了李群的局部性质。通用的李代数的定义如下:
李代数由一个集合 \mathbb{V} ,一个数域 \mathbb{F}   和一个二元运算 [ , ] 组成。如果它们满足以下几条
性质,称 (\mathbb{V}, \mathbb{F}, [ , ]) 为一个李代数,记作 g
1. 封闭性 :  \forall X,Y\in\mathbb{V},[X,Y]\in\mathbb{V}
2. 双线性 : \forall X,Y,Z\in\mathbb{V},a,b\in\mathbb{F} ,有 [a\boldsymbol{X}+b\boldsymbol{Y},\boldsymbol{Z}]=a[\boldsymbol{X},\boldsymbol{Z}]+b[\boldsymbol{Y},\boldsymbol{Z}] ,
                 [Z,a\boldsymbol{X}+b\boldsymbol{Y}]=a[\boldsymbol{Z},\boldsymbol{X}]+b[\boldsymbol{Z},\boldsymbol{Y}]
3. 自反性:\forall X\in\mathbb{V},[X,X]=0
4. 雅可比等价: \forall X,Y,Z\in\mathbb{V},[X,[Y,Z]]+[Z,[Y,X]]+[Y,[Z,X]]=0
其中二元运算被称为 李括号

李代数 \mathfrak{so}(3)

每个 \phi 都可以生成一个反对称矩阵:

\left.\mathbf{\Phi}=\phi^{\wedge}=\left[\begin{array}{ccc}0&-\phi_3&\phi_2\\\\\phi_3&0&-\phi_1\\\\-\phi_2&\phi_1&0\end{array}\right.\right]\in\mathbb{R}^{3\times3}

在此定义下,两个向量  \phi_1,\phi_2  的李括号为:
[\phi_1,\phi_2]=(\boldsymbol{\Phi}_1\boldsymbol{\Phi}_2-\boldsymbol{\Phi}_2\boldsymbol{\Phi}_1)^\vee
李群SO(3)对应的李代数  \mathfrak{so}(3)
\mathfrak{so}(3)=\left\{\phi\in\mathbb{R}^3,\Phi=\phi^{\wedge}\in\mathbb{R}^{3\times3}\right\}
它与 SO (3) 的关系由指数映射给定:
R=\exp(\phi^\wedge)

李代数\mathfrak{se}(3)

\mathfrak{so}(3) 相似,\mathfrak{se}(3)  位于 \mathbb{R}^{6} 空间中:

\mathfrak{se}(3)=\left\{\boldsymbol{\xi}=\left[\begin{array}{c}\boldsymbol{\rho}\\\\\boldsymbol{\phi}\end{array}\right]\in\mathbb{R}^6,\boldsymbol{\rho}\in\mathbb{R}^3,\boldsymbol{\phi}\in\mathfrak{so}\left(3\right),\boldsymbol{\xi}^\wedge=\left[\begin{array}{cc}\phi^\wedge&\rho\\\\\mathbf{0}^T&0\end{array}\right]\in\mathbb{R}^{4\times4}\right\}

前三维为平移,记作 \boldsymbol{\rho};后三维为 旋转,记作 \phi 。 在这里同样使用  ^\wedge  符号将六维向量扩展成为四维矩阵,但不再表示反对称:
\boldsymbol{\xi}^{\wedge}=\left[\begin{array}{cc}{\phi^{\wedge}}&{\boldsymbol{\rho}}\\{\boldsymbol{0}^{T}}&{0}\end{array}\right]\in\mathbb{R}^{4\times4}
李括号为:
[\boldsymbol{\xi}_1,\boldsymbol{\xi}_2]=(\boldsymbol{\xi}_1^\wedge\boldsymbol{\xi}_2^\wedge-\boldsymbol{\xi}_2^\wedge\boldsymbol{\xi}_1^\wedge)^\vee

指数与对数映射

SO(3) 上的指数映射

\mathfrak{so}(3) 中任意一元素 \phi,定义它的指数映射:
\exp(\phi^\wedge)=\sum_{n=0}^\infty\frac1{n!}(\phi^\wedge)^n
由于 \phi 是三维向量,我们可以定义它的模长和它的方向,分别记作 \theta  \boldsymbol{a} ,于是有 \phi=\theta\boldsymbol{a}。这里 \boldsymbol{a} 是一个长度为 1 的方向向量。首先,对于 a^\wedge ,有以下两条性质:
a^\wedge a^\wedge=aa^T-I
以及
a^{\wedge}a^{\wedge}a^{\wedge}=-a^{\wedge}
利用这两个性质,可以把指数映射写成:
\begin{aligned} \exp\left(\phi^{\wedge}\right)& =\exp\left(\theta\boldsymbol{a}^{\wedge}\right)=\sum_{n=0}^{\infty}\frac{1}{n!}\left(\theta\boldsymbol{a}^{\wedge}\right)^{n} \\ &=\boldsymbol{I}+\theta\boldsymbol{a}^{\wedge}+\frac{1}{2!}\theta^{2}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{3!}\theta^{3}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\frac{1}{4!}\theta^{4}{\left(\boldsymbol{a}^{\wedge}\right)}^{4}+... \\ &=\boldsymbol{a}\boldsymbol{a}^T-\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\theta\boldsymbol{a}^{\wedge}+\frac1{2!}\theta^2\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}-\frac1{3!}\theta^3\boldsymbol{a}^{\wedge}-\frac1{4!}\theta^4{(\boldsymbol{a}^{\wedge})}^2+... \\ &=\boldsymbol{a}\boldsymbol{a}^T+\left(\theta-\frac1{3!}\theta^3+\frac1{5!}\theta^5-...\right)\boldsymbol{a}^\wedge-\left(1-\frac1{2!}\theta^2+\frac1{4!}\theta^4-...\right)\boldsymbol{a}^\wedge\boldsymbol{a}^\wedge \\ &=\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin\theta\boldsymbol{a}^{\wedge}-\cos\theta\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} \\ &=(1-\cos\theta)\boldsymbol{a}^\wedge\boldsymbol{a}^\wedge+\boldsymbol{I}+\sin\theta\boldsymbol{a}^\wedge \\ &=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^T+\sin\theta\boldsymbol{a}^\wedge. \end{aligned}
得到了一个似曾相识的式子:
\exp(\theta\boldsymbol{a}^\wedge)=\cos\theta\boldsymbol{I}+(1-\cos\theta)\boldsymbol{a}\boldsymbol{a}^T+\sin\theta\boldsymbol{a}^\wedge

SE(3) 上的指数映射

\mathfrak{se}(3)上的指数映射形式如下:
\begin{aligned} \exp\left(\boldsymbol{\xi}^{\wedge}\right)& =\left[\begin{array}{cc}\sum\limits_{n=0}^{\infty}\frac{1}{n!}(\boldsymbol{\phi}^{\wedge})^{n}&\sum\limits_{n=0}^{\infty}\frac{1}{(n+1)!}(\boldsymbol{\phi}^{\wedge})^{n}\boldsymbol{\rho}\\\mathbf{0}^{T}&1\end{array}\right] \\ &\triangleq\left[\begin{array}{cc}\boldsymbol{R}&\boldsymbol{J}\boldsymbol{\rho}\\\\\boldsymbol{0}^T&1\end{array}\right]=\boldsymbol{T}. \end{aligned}
其中:
\boldsymbol{J}=\frac{\sin\theta}\theta\boldsymbol{I}+\left(1-\frac{\sin\theta}\theta\right)\boldsymbol{a}\boldsymbol{a}^{T}+\frac{1-\cos\theta}\theta\boldsymbol{a}^{\wedge}

可以看到,平移部分经过指数映射之后,发生了一次以 \boldsymbol{J} 为系数矩阵的线性变换。

李群李代数转换关系如下图:

李代数求导与扰动模型

使用李代数的一大动机是为了进行优化。

BCH 公式与近似形式

李群乘积和李代数加法并不等价两个李代数指数映射乘积的完整形式,由 Baker-Campbell-Hausdorff 公式( BCH 公式) 给出。由于它完整的形式较复杂,展开式的前几项:
\small\ln\left(\exp\left(\boldsymbol{A}\right)\exp\left(\boldsymbol{B}\right)\right)=\boldsymbol{A}+\boldsymbol{B}+\frac{1}{2}\left[\boldsymbol{A},\boldsymbol{B}\right]+\frac{1}{12}\left[\boldsymbol{A},[\boldsymbol{A},\boldsymbol{B}]\right]-\frac{1}{12}\left[\boldsymbol{B},[\boldsymbol{A},\boldsymbol{B}]\right]+\cdots
其中 [] 为李括号。 BCH 公式告诉我们,当处理两个矩阵指数之积时,它们会产生一些由 李括号组成的余项。特别地,考虑 SO (3) 上的李代数 \ln\left(\exp\left(\phi_1^\wedge\right)\exp\left(\phi_2^\wedge\right)\right)^\vee ,当  \phi_1   \phi_2  为小量时,小量二次以上的项都可以被忽略掉。此时,BCH 拥有线性近似表达:
\left.\ln\left(\exp\left(\phi_1^\wedge\right)\exp\left(\phi_2^\wedge\right)\right)^\vee\approx\left\{\begin{array}{ll}\boldsymbol{J}_l\left(\boldsymbol{\phi}_2\right)^{-1}\boldsymbol{\phi}_1+\boldsymbol{\phi}_2&\mathrm{if~}\boldsymbol{\phi}_1\text{ is small,}\\\boldsymbol{J}_r\left(\boldsymbol{\phi}_1\right)^{-1}\boldsymbol{\phi}_2+\boldsymbol{\phi}_1&\mathrm{if~}\boldsymbol{\phi}_2\text{ is small.}\end{array}\right.\right.
左乘 BCH 近似雅可比 \boldsymbol{J}_l   事实上就是\mathfrak{se}(3)对数映射中的雅可比矩阵:
\boldsymbol{J}_l=\boldsymbol{J}=\frac{\sin\theta}\theta\boldsymbol{I}+\left(1-\frac{\sin\theta}\theta\right)\boldsymbol{a}\boldsymbol{a}^T+\frac{1-\cos\theta}\theta\boldsymbol{a}^{\wedge}
它的逆为:
\boldsymbol{J}_l^{-1}=\frac\theta2\cot\frac\theta2\boldsymbol{I}+\left(1-\frac\theta2\cot\frac\theta2\right)\boldsymbol{a}\boldsymbol{a}^T-\frac\theta2\boldsymbol{a}^\wedge
而右乘雅可比仅需要对自变量取负号即可:
J_r(\phi)=J_l(-\phi)
某个旋转 \boldsymbol{R} 对应的李代数为 \phi 左乘一个微小旋转 \Delta \boldsymbol{R}(对应的李代数为 \Delta \boldsymbol{\phi})得到的\boldsymbol{R}\Delta \boldsymbol{R}对应的李代数为:
\exp\left(\Delta\phi^\wedge\right)\exp\left(\phi^\wedge\right)=\exp\left(\left(\phi+\boldsymbol{J}_l^{-1}\left(\phi\right)\Delta\phi\right)^\wedge\right)
在李代数上进行加法,让一个 \phi 加上 \Delta \boldsymbol{\phi} :
\small\exp\left(\left(\phi+\Delta\phi\right)^\wedge\right)=\exp\left(\left(\boldsymbol{J}_l\Delta\phi\right)^\wedge\right)\exp\left(\boldsymbol{\phi}^\wedge\right)=\exp\left(\boldsymbol{\phi}^\wedge\right)\exp\left(\left(\boldsymbol{J}_r\Delta\boldsymbol{\phi}\right)^\wedge\right)
对于 SE (3),亦有类似的BCH 近似公式:
\exp\left(\Delta\boldsymbol{\xi}^{\wedge}\right)\exp\left(\boldsymbol{\xi}^{\wedge}\right)\approx\exp\left(\left(\boldsymbol{J}_{l}^{-1}\Delta\boldsymbol{\xi}+\boldsymbol{\xi}\right)^{\wedge}\right),\\\exp\left(\boldsymbol{\xi}^{\wedge}\right)\exp\left(\Delta\boldsymbol{\xi}^{\wedge}\right)\approx\exp\left(\left(\boldsymbol{J}_{r}^{-1}\Delta\boldsymbol{\xi}+\boldsymbol{\xi}\right)^{\wedge}\right).

李代数求导

使用李代数解决求导 问题的思路分为两种:
1. 用李代数表示姿态,然后对根据李代数加法来对李代数求导。
2. 对李群 左乘 右乘 微小扰动,然后对该扰动求导,称为左扰动和右扰动模型。
对一个空间点 p  进行了旋转,得到了 \boldsymbol{R}p ,旋转之后点的坐标对旋转的导数可表示为:
\frac{\partial\left(Rp\right)}{\partial R}
由于 SO (3) 没有加法,所以该导数无法按照导数的定义进行计算。

李代数加法求导

转而计算:\frac{\partial\left(\exp\left(\phi^{\wedge}\right)\boldsymbol{p}\right)}{\partial\phi}
按照导数的定义,有:
\begin{aligned} \frac{\partial\left(\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}\right)}{\partial\phi}& =\lim_{\delta\boldsymbol{\phi}\to0}\frac{\exp\left(\left(\boldsymbol{\phi}+\delta\boldsymbol{\phi}\right)^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\phi}} \\ &=\lim_{\delta\boldsymbol{\phi}\to0}\frac{\exp\left(\left(\boldsymbol{J}_l\delta\boldsymbol{\phi}\right)^\wedge\right)\exp\left(\boldsymbol{\phi}^\wedge\right)\boldsymbol{p}-\exp\left(\boldsymbol{\phi}^\wedge\right)\boldsymbol{p}}{\delta\boldsymbol{\phi}} \\ &\approx\lim_{\delta\boldsymbol{\phi}\to0}\frac{\left(\boldsymbol{I}+\left(\boldsymbol{J}_l\delta\boldsymbol{\phi}\right)^{\wedge}\right)\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\phi}} \\ &=\lim_{\delta\boldsymbol{\phi}\to0}\frac{\left(\boldsymbol{J}_l\delta\phi\right)^{\wedge}\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\phi}} \\ &=\lim_{\delta\boldsymbol{\phi}\to0}\frac{-\left(\exp\left(\boldsymbol{\phi}^\wedge\right)\boldsymbol{p}\right)^\wedge\boldsymbol{J}_l\delta\boldsymbol{\phi}}{\delta\boldsymbol{\phi}}=-\left(\boldsymbol{R}\boldsymbol{p}\right)^\wedge\boldsymbol{J}_l. \end{aligned}
第二行的近似为 BCH 线性近似,第三行为泰勒展开舍去高阶项后近似,第四行至第 五行将反对称符号看作叉积,交换之后变号。旋转后的点相对于李代数的导数:
\frac{\partial\left(\boldsymbol{R}\boldsymbol{p}\right)}{\partial\phi}=\left(-\boldsymbol{R}\boldsymbol{p}\right)^{\wedge}\boldsymbol{J}_l
于这里仍然含有形式比较复杂的 \boldsymbol{J}_l 。

扰动模型求导

旋转 \boldsymbol{R} 进行一次扰动 \Delta \boldsymbol{R} ,左乘后的李代数对 \phi 求导,即:

\begin{aligned} \frac{\partial\left(\boldsymbol{Rp}\right)}{\partial\varphi}& =\lim_{\boldsymbol{\varphi}\to0}\frac{\exp\left(\boldsymbol{\varphi}^{\wedge}\right)\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}}{\varphi} \\ &\approx\lim_{\boldsymbol{\varphi}\to0}\frac{\left(1+\boldsymbol{\varphi}^{\wedge}\right)\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\phi}^{\wedge}\right)\boldsymbol{p}}\varphi \\ &=\lim_{\varphi\to0}\frac{\varphi^\wedge Rp}\varphi=\lim_{\varphi\to0}\frac{-(\boldsymbol{Rp})^\wedge\varphi}\varphi=-(\boldsymbol{Rp})^\wedge \end{aligned}

SE(3) 上的李代数求导

\begin{aligned} \frac{\partial\left(\boldsymbol{T}\boldsymbol{p}\right)}{\partial\delta\boldsymbol{\xi}}& =\lim_{\delta\boldsymbol{\xi}\to\mathbf{0}}\frac{\exp\left(\delta\boldsymbol{\xi}^{\wedge}\right)\exp\left(\boldsymbol{\xi}^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\xi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\xi}} \\ &\approx\lim_{\delta\boldsymbol{\xi}\to\boldsymbol{0}}\frac{\left(\boldsymbol{I}+\delta\boldsymbol{\xi}^{\wedge}\right)\exp\left(\boldsymbol{\xi}^{\wedge}\right)\boldsymbol{p}-\exp\left(\boldsymbol{\xi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\xi}} \\ &=\lim_{​{\delta\boldsymbol{\xi}\to\boldsymbol{0}}}\frac{\delta\boldsymbol{\xi}^{\wedge}\exp\left(\boldsymbol{\xi}^{\wedge}\right)\boldsymbol{p}}{\delta\boldsymbol{\xi}} \\ &=\lim_{​{\delta\boldsymbol{\xi}\to\mathbf{0}}}\frac{\left[\begin{array}{cc}\delta\boldsymbol{\phi}^{\wedge}&\delta\boldsymbol{\rho}\\\\\mathbf{0}^{T}&0\end{array}\right]\left[\begin{array}{c}R\boldsymbol{p}+\boldsymbol{t}\\\\1\end{array}\right]}{\delta\boldsymbol{\xi}} \\ &=\lim_{\delta\boldsymbol{\xi}\to\boldsymbol{0}}\frac{\left[\begin{array}{c}\delta\boldsymbol{\phi}^{\wedge}\left(\boldsymbol{R}\boldsymbol{p}+\boldsymbol{t}\right)+\delta\boldsymbol{\rho}\\\\0\end{array}\right]}{\delta\boldsymbol{\xi}}=\left[\begin{array}{cc}\boldsymbol{I}&-\left(\boldsymbol{R}\boldsymbol{p}+\boldsymbol{t}\right)^{\wedge}\\\\\boldsymbol{0}^{T}&\boldsymbol{0}^{T}\end{array}\right]\triangleq\left(\boldsymbol{T}\boldsymbol{p}\right)^{\odot} \end{aligned}

  • 15
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值