Neural Networks on FPGA (1) Introduction
使用软件训练获得weight (权值,权重) 和 bias (偏置,阈值,threshold)再在FPGA 硬件上实现。使用定点数表示数据。在不溢出的情况下会有些许误差,但相对于32位浮点数,定点数更灵活,性能更好。但需要指定总位宽,整数和小数的位宽。定点数需要权衡精度和资源消耗。对于加减法,补码更加高效。对于乘法,原码更加高效。由于产生激活函数很麻烦,因此使用ROM (或称为查找表 LUT)存储预先计算好的值,ROM的地址为自变量 x。此ROM非FPGA中的BROM或DRO.
原创
2021-12-31 16:14:24 ·
186 阅读 ·
0 评论