数学分析教程史济怀练习6.4

练习6.4

1

1)

∫ 0 π s i n 3 x d x = − ∫ 0 π 1 − c o s 2 x d c o s x = 4 3 \int_{0}^{\pi} sin^3 xdx = -\int_{0}^{\pi}1-cos^2xdcosx = \frac{4}{3} 0πsin3xdx=0π1cos2xdcosx=34

2)

主要是这个 x 2 x^2 x2的问题,两次分部积分把这个东西消去。
∫ − π π x 2 c o s x d x = 2 ∫ 0 π x 2 d s i n x = 2 ( x 2 s i n x ∣ 0 π − ∫ 0 π s i n x 2 x d x ) 其 中 , ∫ 0 π 2 x s i n x d x = 2 ∫ 0 π x d c o s x = 2 π 原 式 = − 4 π \begin{aligned} \int_{-\pi}^{\pi} x^2 cosxdx = 2\int_{0}^{\pi} x^2 dsinx = 2(x^2sinx|_{0}^{\pi} - \int_{0}^{\pi}sinx 2xdx) \\ 其中,\int_{0}^{\pi} 2xsinxdx = 2\int_{0}^{\pi}xdcosx = 2\pi \\ 原式 = -4\pi \end{aligned} ππx2cosxdx=20πx2dsinx=2(x2sinx0π0πsinx2xdx),0π2xsinxdx=20πxdcosx=2π=4π

3)

∫ 0 3 x 1 + 1 + x d x , 令 t = 1 + x ∫ 1 2 t 2 − 1 1 + t d ( t 2 − 1 ) = 5 3 \int_{0}^{3} \frac{x}{1+\sqrt{1+x}}dx,令t = \sqrt{1+x} \\ \int_{1}^2 \frac{t^2 -1}{1+t}d(t^2-1) = \frac{5}{3} 031+1+x xdx,t=1+x 121+tt21d(t21)=35

4)

a r c t a n x arctanx arctanx求导之后很好算,分部积分把 a r c t a n x arctanx arctanx去掉。
∫ 0 3 x a r c t a n x d x = 1 2 ∫ 0 3 a r c t a n x d x 2 = 1 2 ( x 2 a r c t a n x ∣ 0 3 − ∫ 0 3 x 2 1 + x 2 ) = − 3 2 + 2 3 π \begin{aligned} \int_{0}^{\sqrt3} xarctanxdx &= \frac{1}{2} \int_{0}^{\sqrt{3}} arctanx dx^2 \\ & = \frac{1}{2}(x^2arctanx|_{0}^{\sqrt{3}} - \int_{0}^{\sqrt{3}} \frac{x^2}{1+x^2}) \\ & = -\frac{\sqrt3}{2} + \frac{2}{3}\pi \end{aligned} 03 xarctanxdx=2103 arctanxdx2=21(x2arctanx03 03 1+x2x2)=23 +32π

5)

简单题,看着前面复杂其实凑个数就好了。
∫ 0 − 1 ( 2 x + 1 ) 1 − x − x 2 d x = ∫ 0 − 1 1 − x − x 2 d ( x 2 + x − 1 ) = 0 \begin{aligned} \int_{0}^{-1} (2x+1)\sqrt{1-x-x^2}dx &= \int_{0}^{-1} \sqrt{1-x-x^2} d(x^2+x-1) \\ & = 0 \end{aligned} 01(2x+1)1xx2 dx=011xx2 d(x2+x1)=0

6)

拆就好了, [ 1 e , 1 ] , [ 1 , e ] [\frac{1}{e}, 1],[1, e] [e1,1],[1,e]两段,然后分别分布积分即可。
∫ 1 e e ∣ I n x ∣ d x = ∫ 1 e 1 − I n x d x + ∫ 1 e I n x d x \int_{\frac{1}{e}}^{e} |Inx|dx = \int_{\frac{1}{e}}^{1} -Inxdx + \int_{1}^{e} Inxdx e1eInxdx=e11Inxdx+1eInxdx

7)

主要还是取整函数的问题,分段积分即可, [ 0 , 1 ] , [ 1 , 2 ] , [ 2 , 3 ] , [ 3 , 4 ] , [ 4 , 5 ] [0,1],[1,2],[2,3],[3,4],[4,5] [0,1],[1,2],[2,3],[3,4],[4,5]
∫ 0 5 [ x ] s i n π x 5 d x = ∫ 1 2 s i n π x 5 d x + ∫ 2 3 2 s i n π x 5 d x + ∫ 3 4 3 s i n π x 5 d x + ∫ 4 5 4 s i n π x 5 d x \int_{0}^{5} [x]sin \frac{\pi x}{5}dx = \int_{1}^{2} sin \frac{\pi x}{5}dx +\int_{2}^{3} 2sin \frac{\pi x}{5}dx + \int_{3}^{4} 3sin \frac{\pi x}{5}dx + \int_{4}^{5} 4sin \frac{\pi x}{5}dx 05[x]sin5πxdx=12sin5πxdx+232sin5πxdx+343sin5πxdx+454sin5πxdx

8)

∫ 0 a x 2 a 2 − x 2 d x = ∫ 0 a ( x 2 − a 2 ) a 2 − x 2 d x + a 2 ∫ 0 a a 2 − x 2 d x = − ∫ 0 π 2 ( a 3 c o s 3 x ) d a s i n x + a 2 ∫ 0 π / 2 a c o s x d a s i n x ( 令 x = a s i n x ) = a 4 π 16 ( 用 前 面 的 公 式 即 可 ) \begin{aligned} \int_{0}^{a} x^2 \sqrt{a^2 -x^2} dx &= \int_{0}^{a}(x^2 - a^2)\sqrt{a^2 -x^2} dx + a^2 \int_{0}^{a} \sqrt{a^2 - x^2}dx \\ & = -\int_{0}^{\frac{\pi}{2}} (a^3cos^3x)dasinx + a^2 \int_{0}^{\pi/2}acosxdasinx (令x = asinx) \\ & = \frac{a^4 \pi}{16} (用前面的公式即可) \end{aligned} 0ax2a2x2 dx=0a(x2a2)a2x2 dx+a20aa2x2 dx=02π(a3cos3x)dasinx+a20π/2acosxdasinx(x=asinx)=16a4π

9)

两次换元。
先 让 t = e x , 得 到 ∫ 1 2 t − 1 d l n t , 再 让 x = t − 1 , 得 到 ∫ 1 2 2 x 2 x 2 + 1 d x 先让t = e^x,得到\int_{1}^{2} \sqrt{t-1}dlnt,再让x = \sqrt{t-1},得到\int_{1}^{2} \frac{2x^2}{x^2 + 1}dx t=ex12t1 dlntx=t1 12x2+12x2dx

10)

换元消去 I n x Inx Inx即可。
∫ 0 1 x n I n x d x = 1 n + 1 ∫ 0 1 l n x d x n + 1 分 部 积 分 即 可 \begin{aligned} \int_{0}^{1} x^nInxdx & = \frac{1}{n+1} \int_{0}^{1} lnx dx^{n+1}分部积分即可 \end{aligned} 01xnInxdx=n+1101lnxdxn+1

11)

看到 I n In In,分布积分就好了, I n ( x + a 2 + x 2 ) In(x + \sqrt{a^2 + x^2}) In(x+a2+x2 )求导的结果是很简单的。

12)

∫ 0 π / 2 c o s x s i n x a 2 s i n 2 x + b 2 c o s 2 x d x = ∫ 0 π / 2 s i n x a 2 s i n 2 x + b 2 c o s 2 x d s i n x = ∫ 0 1 x a 2 x 2 − b 2 x 2 + b 2 d x 当 a = = b , 原 式 = 1 2 a 2 当 a ! = b , 原 式 = 1 2 ( a 2 − b 2 ) ∫ 0 1 d x 2 ( a 2 − b 2 ) + b 2 ( a 2 − b 2 ) x 2 + b 2 = I n a − I n b a 2 − b 2 和 答 案 不 太 一 样 , 但 我 又 看 不 出 那 里 有 问 题 。 \begin{aligned} \int_{0}^{\pi/2} \frac{cosxsinx}{a^2sin^2x + b^2cos^2x}dx & = \int_{0}^{\pi/2} \frac{sinx}{a^2sin^2x + b^2cos^2x}dsinx \\ & = \int_{0}^{1} \frac{x}{a^2x^2 - b^2x^2 + b^2}dx \\ 当a == b, 原式 = \frac{1}{2a^2} \\ 当 a != b, 原式 = \frac{1}{2(a^2 - b^2)} \int_{0}^{1} \frac{dx^2(a^2 - b^2) + b^2}{(a^2 - b^2)x^2 + b^2} = \frac{Ina - In b}{a^2 - b^2} \end{aligned} 和答案不太一样,但我又看不出那里有问题。 0π/2a2sin2x+b2cos2xcosxsinxdxa==b,=2a21a!=b,=2(a2b2)101(a2b2)x2+b2dx2(a2b2)+b2=a2b2InaInb=0π/2a2sin2x+b2cos2xsinxdsinx=01a2x2b2x2+b2xdx

2

老师讲过了

3

老师讲过了

4

奇 数 : I 2 n − 1 = ( 2 n − 2 2 n − 1 ) ( 2 n − 4 2 n − 3 ) ( 2 n − 6 2 n − 5 ) . . . . . . > = ( 2 n − 2 2 n ) ( 2 n − 4 2 n − 2 ) ( 2 n − 6 2 n − 4 ) . . . . . . ( 2 4 ) = 1 n I 2 n − 1 = ( 2 n − 2 2 n − 1 ) ( 2 n − 4 2 n − 3 ) ( 2 n − 6 2 n − 5 ) . . . . . . = ( 1 − 1 2 n − 1 ) ( 1 − 1 2 n − 3 ) ( 1 − 1 2 n − 5 ) . . . ( 1 − 1 3 ) < = ( 1 − 1 2 n + 1 ) ( 1 − 1 2 n ) ( 1 − 1 2 n − 1 ) . . . . . . = 1 2 n + 1 偶 数 也 是 一 样 。 奇数: \\ I_{2n-1} = (\frac{2n-2}{2n-1})(\frac{2n-4}{2n-3})(\frac{2n-6}{2n-5})...... >= (\frac{2n-2}{2n})(\frac{2n-4}{2n-2})(\frac{2n-6}{2n-4})......(\frac{2}{4}) = \frac{1}{n} \\ I_{2n-1} = (\frac{2n-2}{2n-1})(\frac{2n-4}{2n-3})(\frac{2n-6}{2n-5})...... = \\ (1 - \frac{1}{2n-1})(1 - \frac{1}{2n-3})(1 - \frac{1}{2n-5})...(1 - \frac{1}{3}) <= \\ (1 - \frac{1}{2n + 1})(1 - \frac{1}{2n})(1 - \frac{1}{2n-1}) ...... = \frac{1}{2n+1} \\ 偶数也是一样。 :I2n1=(2n12n2)(2n32n4)(2n52n6)......>=(2n2n2)(2n22n4)(2n42n6)......42=n1I2n1=(2n12n2)(2n32n4)(2n52n6)......=(12n11)(12n31)(12n51)...(131)<=(12n+11)(12n1)(12n11)......=2n+11
放缩一下就好了,第二个放缩只要把后一项放大到能和前项消去就好了,夹逼准则就是0.

5

直接就是 I n I_n In了,利用前面的结果即可。

6

1)

换元就好了,令 x = π 2 − x x = \frac{\pi}{2} - x x=2πx

2)

这种题目就是换限。
∫ 0 π x f ( s i n x ) d x = ∫ π 0 ( π − x ) f ( s i n x ) d ( π − x ) = ∫ 0 π π f ( s i n x ) d x − ∫ 0 π ( x ) f ( s i n x ) d x , 化 简 即 可 。 \begin{aligned} \int_{0}^{\pi} xf(sinx)dx & = \int_{\pi}^{0}(\pi - x) f(sinx)d(\pi - x) \\ & = \int_{0}^{\pi}\pi f(sinx)dx - \int_{0}^{\pi}(x) f(sinx)dx,化简即可。 \end{aligned} 0πxf(sinx)dx=π0(πx)f(sinx)d(πx)=0ππf(sinx)dx0π(x)f(sinx)dx

7

这种误差估计的题目最烦了,很可能尝试一大堆方法结果一个也行不通。
条件出现了 ∣ f ′ ∣ < = 1 |f'| <=1 f<=1,肯定是和莱布尼兹公式相关了。直接考虑莱布尼兹公式。
f ( 2 ) − f ( x ) = ∫ x 2 f ′ ( x ) d x f(2) - f(x) = \int_{x}^{2} f'(x)dx f(2)f(x)=x2f(x)dx
f ( x ) − f ( 0 ) = ∫ 0 x f ′ ( x ) d x f(x) - f(0) = \int_{0}^{x} f'(x)dx f(x)f(0)=0xf(x)dx
f ( x ) = f ( 2 ) − ∫ x 2 f ′ ( x ) d x < = 1 − ∫ x 2 − 1 d x = 3 − x , ∫ 0 2 f ( x ) d x < = ∫ 0 2 3 − x d x = 4 f(x) = f(2) - \int_{x}^{2} f'(x)dx <= 1 - \int_{x}^{2} -1 dx = 3 - x, \int_{0}^{2}f(x)dx <= \int_{0}^{2} 3 - x dx = 4 f(x)=f(2)x2f(x)dx<=1x21dx=3x,02f(x)dx<=023xdx=4
f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( x ) d x < = 1 + ∫ 0 x 1 d x = 1 + x , ∫ 0 2 f ( x ) d x > = 0 f(x) = f(0) + \int_{0}^{x} f'(x)dx <= 1+\int_{0}^{x} 1dx = 1+x, \int_{0}^{2}f(x)dx >= 0 f(x)=f(0)+0xf(x)dx<=1+0x1dx=1+x,02f(x)dx>=0
最后结果比答案要大上一圈了,还是估计大了,估计大了说明是误差问题,估计要是他们还比答案小了可能就是算错了。误差是会累计的,那么我们就分段估计。
f ( x ) − f ( 0 ) = ∫ 0 x f ′ ( x ) d x ⇒ f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( x ) d x < = 1 + ∫ 0 x 1 d x = 1 + x ∫ 0 1 f ( x ) d x < = ∫ 0 1 1 + x d x = 3 2 f ( x ) − f ( 0 ) = ∫ 0 x f ′ ( x ) d x ⇒ f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( x ) d x > = 1 + ∫ 0 x − 1 d x = 1 − x ∫ 0 1 f ( x ) d x > = ∫ 0 1 1 − x d x = 1 2 1 2 < = ∫ 0 1 f ( x ) d x < = 3 2 f ( 2 ) − f ( x ) = ∫ x 2 f ′ ( x ) d x ⇒ f ( x ) = f ( 2 ) − ∫ x 2 f ′ ( x ) d x < = 1 − ∫ x 2 − 1 d x = 3 − x ∫ 1 2 f ( x ) d x < = ∫ 1 2 3 − x d x = 3 2 f ( 2 ) − f ( x ) = ∫ x 2 f ′ ( x ) d x ⇒ f ( x ) = f ( 2 ) − ∫ x 2 f ′ ( x ) d x > = 1 − ∫ x 2 1 d x = x − 1 ∫ 1 2 f ( x ) d x > = ∫ 1 2 x − 1 d x = 1 2 1 2 < = ∫ 1 2 f ( x ) d x < = 3 2 f(x) - f(0) = \int_{0}^{x}f'(x)dx \Rightarrow f(x) = f(0) + \int_{0}^{x} f'(x)dx <= 1 + \int_{0}^{x}1dx = 1 + x \\ \int_{0}^{1}f(x)dx <= \int_{0}^{1} 1 + xdx = \frac{3}{2} \\ f(x) - f(0) = \int_{0}^{x}f'(x)dx \Rightarrow f(x) = f(0) + \int_{0}^{x} f'(x)dx >= 1 + \int_{0}^{x}-1dx = 1 - x \\ \int_{0}^{1}f(x)dx >=\int_{0}^{1} 1 - xdx = \frac{1}{2} \\ \frac{1}{2}<= \int_{0}^{1}f(x)dx <= \frac{3}{2}\\ f(2) - f(x) = \int_{x}^{2}f'(x)dx \Rightarrow f(x) = f(2) - \int_{x}^{2}f'(x)dx <= 1 - \int_{x}^{2}-1dx = 3 - x\\ \int_{1}^{2}f(x)dx <= \int_{1}^{2}3 - xdx = \frac{3}{2} \\ f(2) - f(x) = \int_{x}^{2}f'(x)dx \Rightarrow f(x) = f(2) - \int_{x}^{2}f'(x)dx >= 1 - \int_{x}^{2}1dx = x - 1\\ \int_{1}^{2}f(x)dx >= \int_{1}^{2}x - 1dx = \frac{1}{2} \\ \frac{1}{2}<= \int_{1}^{2}f(x)dx <= \frac{3}{2}\\ f(x)f(0)=0xf(x)dxf(x)=f(0)+0xf(x)dx<=1+0x1dx=1+x01f(x)dx<=011+xdx=23f(x)f(0)=0xf(x)dxf(x)=f(0)+0xf(x)dx>=1+0x1dx=1x01f(x)dx>=011xdx=2121<=01f(x)dx<=23f(2)f(x)=x2f(x)dxf(x)=f(2)x2f(x)dx<=1x21dx=3x12f(x)dx<=123xdx=23f(2)f(x)=x2f(x)dxf(x)=f(2)x2f(x)dx>=1x21dx=x112f(x)dx>=12x1dx=2121<=12f(x)dx<=23
刚刚好,上下积分区域加起来就是答案了。(如果我没有把 ∣ f ′ ∣ < = 1 |f'| <= 1 f<=1拆成两个一个用一半,而是都用 ∣ . ∣ |.| .,估计有问题的。)

8

有了上一题的教训,先拆了在估计了。而且题目还给了条件,必拆了。
∫ − 1 1 f ( x ) d x = ∫ − 1 − a f ( x ) d x + ∫ − a a f ( x ) d x + ∫ a 1 f ( x ) d x ⇒ ∣ ∫ − 1 1 f ( x ) d x ∣ < = ∣ ∫ − 1 − a f ( x ) d x ∣ + ∣ ∫ a 1 f ( x ) d x ∣ \int_{-1}^{1}f(x)dx = \int_{-1}^{-a}f(x)dx + \int_{-a}^{a}f(x)dx +\int_{a}^{1}f(x)dx \\ \Rightarrow |\int_{-1}^{1}f(x)dx| <= |\int_{-1}^{-a}f(x)dx| +|\int_{a}^{1}f(x)dx| 11f(x)dx=1af(x)dx+aaf(x)dx+a1f(x)dx11f(x)dx<=1af(x)dx+a1f(x)dx
而 注 意 , ∫ − a a f ( x ) d x = 0 ⇒ f ( ξ ) = 0 f ( x ) − f ( ξ ) = ∫ ξ x f ′ ( x ) d x ⇒ ∣ f ( x ) ∣ < = ∣ ∫ ξ x ∣ f ′ ( x ) ∣ ∣ < = M ∣ x − ξ ∣ x 这 里 可 以 取 任 意 值 , 如 果 x 小 于 ξ 换 个 位 置 就 好 了 。 所 以 有 : ∣ ∫ a 1 f ( x ) d x ∣ < = ∫ a 1 ∣ f ( x ) ∣ d x < = ∫ a 1 x − ξ d x = [ 1 2 − 1 2 a 2 − ξ ( 1 − a ) ] M ( ξ 在 − a 和 a 之 间 , 这 x 在 a 到 1 之 间 , 铁 定 大 于 ξ 了 ) ∣ ∫ − 1 − a f ( x ) d x ∣ < = ∫ − 1 − a ∣ f ( x ) ∣ d x < = ∫ − 1 − a ξ − x d x = [ ξ ( 1 − a ) − 1 2 a 2 + 1 2 ] M 上 下 加 一 下 就 成 了 而注意,\int_{-a}^{a}f(x)dx = 0 \Rightarrow f(\xi) = 0 \\ f(x) - f(\xi) = \int_{\xi}^{x} f'(x)dx \Rightarrow |f(x)| <= |\int_{\xi}^{x}|f'(x)|| <= M|x - \xi| \\ x这里可以取任意值,如果x小于\xi换个位置就好了。\\ 所以有:\\ |\int_{a}^{1} f(x)dx| <= \int_{a}^{1} |f(x)|dx <= \int_{a}^{1}x - \xi dx = [\frac{1}{2} - \frac{1}{2}a^2-\xi (1-a)]M (\xi在-a和a之间,这x在a到1之间,铁定大于\xi了)\\ |\int_{-1}^{-a} f(x)dx| <= \int_{-1}^{-a} |f(x)|dx <= \int_{-1}^{-a} \xi - xdx = [\xi(1-a) - \frac{1}{2}a^2 + \frac{1}{2}]M \\ 上下加一下就成了 aaf(x)dx=0f(ξ)=0f(x)f(ξ)=ξxf(x)dxf(x)<=ξxf(x)<=Mxξxxξ:a1f(x)dx<=a1f(x)dx<=a1xξdx=[2121a2ξ(1a)]M(ξaaxa1ξ)1af(x)dx<=1af(x)dx<=1aξxdx=[ξ(1a)21a2+21]M

9

ϕ ( x ) = ∫ x 2 π s i n t t d t \phi(x) = \int_{x}^{2\pi}\frac{sint}{t}dt ϕ(x)=x2πtsintdt,一次分部积分就出来了。

10

这个题不知道是太难不会做还是咋地,我半天算不出,我怀疑是题目错了,把 2 x 2x 2x改成x,一次分部积分就好了。

11

这个我一开始是用第二积分中值定理做的。
l i m h → o + ∫ − 1 1 h h 2 + x 2 f ( x ) d x = l i m h → o + ∫ 0 1 h h 2 + x 2 f ( x ) d x + l i m h → o + ∫ − 1 0 h h 2 + x 2 f ( x ) d x = l i m h → o + ∫ 0 1 h h 2 + x 2 f ( x ) d x + l i m h → o + ∫ 0 1 h h 2 + x 2 f ( − x ) d x = l i m h → o + ∫ 0 1 h h 2 + x 2 [ f ( x ) + f ( − x ) ] d x 换 元 ( t = x h ) + 第 二 积 分 中 值 定 理 : ⇒ l i m [ f ( h ξ ) + f ( − h ξ ) ] a r c t a n 1 h ( 0 < = ξ < = 1 h ) \begin{aligned} lim_{h \rightarrow o^+} \int_{-1}^{1} \frac{h}{h^2 + x^2} f(x) dx & = lim_{h \rightarrow o^+} \int_{0}^{1} \frac{h}{h^2 + x^2} f(x) dx + lim_{h \rightarrow o^+} \int_{-1}^{0} \frac{h}{h^2 + x^2} f(x) dx \\ & = lim_{h \rightarrow o^+} \int_{0}^{1} \frac{h}{h^2 + x^2} f(x) dx + lim_{h \rightarrow o^+} \int_{0}^{1} \frac{h}{h^2 + x^2} f(-x) dx \\ & = lim_{h \rightarrow o^+} \int_{0}^{1} \frac{h}{h^2 + x^2} [f(x) + f(-x)] dx \end{aligned} \\ 换元(t = \frac{x}{h}) + 第二积分中值定理:\\ \Rightarrow lim [f(h\xi) + f(-h \xi)]arctan \frac{1}{h} (0 <= \xi <= \frac{1}{h}) limho+11h2+x2hf(x)dx=limho+01h2+x2hf(x)dx+limho+10h2+x2hf(x)dx=limho+01h2+x2hf(x)dx+limho+01h2+x2hf(x)dx=limho+01h2+x2h[f(x)+f(x)]dx(t=hx)+:lim[f(hξ)+f(hξ)]arctanh1(0<=ξ<=h1)
关键问题就是这个 ξ \xi ξ有等号,是有可能 ξ = 1 / h \xi = 1/h ξ=1/h的,如果是小于号而不是小于等于就好了。

所以后面转换了思路,用定义法去证明他。注意这里 h x 2 + h 2 \frac{h}{x^2+h^2} x2+h2h是没有问题的,关键是 f ( x ) f(x) f(x),如何能从 f ( x ) f(x) f(x)引出小于 ϵ \epsilon ϵ。我之所以会想到定义,一方面是正推推不了,另一方面是题目给了连续,可能要用连续的定义。
连 续 定 义 : f ( x ) 在 [ 0 , 1 ] 连 续 ( 考 虑 一 半 就 好 了 ) , ∀ ϵ > 0 , ∃ δ > 0 , ∀ ∣ x ∣ < δ , ∣ f ( x ) − f ( 0 ) ∣ < ϵ 将 区 间 划 分 , ∫ 0 δ + ∫ δ 1 ∣ ∫ 0 δ h ( f ( x ) − f ( 0 ) ) h 2 + x 2 d x ∣ < = ∫ 0 δ h ∣ f ( x ) − f ( 0 ) ∣ h 2 + x 2 d x < = ϵ ∫ 0 δ h h 2 + x 2 d x = k ϵ ∣ ∫ δ 1 h ( f ( x ) − f ( 0 ) ) h 2 + x 2 d x ∣ < = ∣ ∫ δ 1 h ∣ f ( x ) − f ( 0 ) ∣ h 2 + x 2 d x ∣ < = h M ∫ δ 1 1 h 2 + x 2 d x < = h M ∫ δ 1 1 x 2 d x < = h M ( 1 δ − 1 ) 当 h → 0 + , ∣ ∫ δ 1 h ( f ( x ) − f ( 0 ) ) h 2 + x 2 d x ∣ < = ϵ , 两 个 加 起 来 就 好 了 。 另 一 边 也 一 样 的 , 只 不 过 f ( x ) 变 成 f ( − x ) 连续定义:f(x)在[0,1]连续(考虑一半就好了),\forall \epsilon > 0, \exists \delta > 0, \\ \forall |x| < \delta, |f(x) - f(0)| < \epsilon \\ 将区间划分,\int_{0}^{\delta} + \int_{\delta}^{1} \\ |\int_{0}^{\delta} \frac{h(f(x) - f(0))}{h^2 + x^2}dx| <= \int_{0}^{\delta} \frac{h|f(x) - f(0)|}{h^2 + x^2}dx <= \epsilon \int_{0}^{\delta} \frac{h}{h^2 + x^2}dx = k \epsilon \\ |\int_{\delta}^{1} \frac{h(f(x) - f(0))}{h^2 + x^2}dx| <= |\int_{\delta}^{1} \frac{h|f(x) - f(0)|}{h^2 + x^2}dx| <= hM \int_{\delta}^{1} \frac{1}{h^2 + x^2}dx <= hM \int_{\delta}^{1} \frac{1}{x^2}dx <= hM(\frac{1}{\delta} - 1) \\ 当h \rightarrow 0^+,|\int_{\delta}^{1} \frac{h(f(x) - f(0))}{h^2 + x^2}dx| <= \epsilon,两个加起来就好了。另一边也一样的,只不过f(x)变成f(-x) f(x)[0,1],ϵ>0,δ>0,x<δ,f(x)f(0)<ϵ0δ+δ10δh2+x2h(f(x)f(0))dx<=0δh2+x2hf(x)f(0)dx<=ϵ0δh2+x2hdx=kϵδ1h2+x2h(f(x)f(0))dx<=δ1h2+x2hf(x)f(0)dx<=hMδ1h2+x21dx<=hMδ1x21dx<=hM(δ11)h0+δ1h2+x2h(f(x)f(0))dx<=ϵf(x)f(x)
这样就出来了

12

1)

l i m ∫ a b f ( x ) c o s λ x d x = l i m 1 λ [ f ( x ) s i n λ x ∣ a b − ∫ a b s i n λ x f ′ ( x ) d x ] lim \int_{a}^{b} f(x)cos \lambda xdx = lim \frac{1}{\lambda} [f(x)sin \lambda x|_a^b - \int_{a}^{b} sin \lambda x f'(x)dx] limabf(x)cosλxdx=limλ1[f(x)sinλxababsinλxf(x)dx]
不用算了,就是0。左边有阶, f ( x ) f(x) f(x)闭区间连续闭有界, s i n sin sin虽然带了 λ \lambda λ但还是有界,第二项注意题目是连续可导,上课老师说连续可导相对于导函数连续,闭区间连续必然有界了,所以分母有界,直接就是0了。

2)

和前面的一样。

13

送分题,要是不给 t 2 t^2 t2有点难,给了就很容易了。 1 t 2 \frac{1}{t^2} t21还原成 − 1 t -\frac{1}{t} t1,然后换元 x = 1 / t x = 1/t x=1/t就好了。

14

对第一个1)用 t = π 2 − x t = \frac{\pi}{2} -x t=2πx会发现,1)和2)是一样的,两个加起来求出积分除个2就好了。
∫ 0 π 2 c o s 2 x c o s x + s i n x d x + ∫ 0 π 2 s i n 2 x c o s x + s i n x d x = ∫ 0 π 2 1 c o s x + s i n x d x \int_{0}^{\frac{\pi}{2}} \frac{cos^2x}{cosx + sinx}dx + \int_{0}^{\frac{\pi}{2}} \frac{sin^2x}{cosx + sinx}dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{cosx + sinx}dx 02πcosx+sinxcos2xdx+02πcosx+sinxsin2xdx=02πcosx+sinx1dx
∫ 0 π 2 1 c o s x + s i n x d x = ∫ 0 π 2 1 c o s 2 x 2 − s i n 2 x 2 + 2 s i n x 2 c o s x 2 d x = 2 ∫ 0 π 2 s e c 2 x 2 1 − t a n 2 x 2 + 2 t a n x 2 d x = 2 ∫ 0 π 2 1 1 − t a n 2 x 2 + 2 t a n x 2 d t a n x 2 ( 换 元 ) = 2 ∫ 0 1 1 1 − x 2 + 2 x d x 然 后 用 前 面 的 有 理 函 数 原 函 数 的 方 法 就 好 了 。 \begin{aligned} \int_{0}^{\frac{\pi}{2}} \frac{1}{cosx + sinx}dx & = \int_{0}^{\frac{\pi}{2}} \frac{1}{cos^2 \frac{x}{2} - sin^2 \frac{x}{2} + 2sin \frac{x}{2}cos \frac{x}{2}}dx \\ & = 2 \int_{0}^{\frac{\pi}{2}}\frac{sec^2 \frac{x}{2}}{1 - tan^2 \frac{x}{2} + 2tan \frac{x}{2}}dx \\ & = 2 \int_{0}^{\frac{\pi}{2}}\frac{1}{1 - tan^2 \frac{x}{2} + 2tan \frac{x}{2}}dtan \frac{x}{2} (换元)\\ & = 2 \int_{0}^{1}\frac{1}{1 - x^2+ 2x}dx \end{aligned} \\ 然后用前面的有理函数原函数的方法就好了。 02πcosx+sinx1dx=02πcos22xsin22x+2sin2xcos2x1dx=202π1tan22x+2tan2xsec22xdx=202π1tan22x+2tan2x1dtan2x()=2011x2+2x1dx

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值