数学分析教程史济怀练习6.6

练习题

这四个题目都比较好想。

1

看到 m a x ( f ( x ) , g ( x ) ) , m i n ( f ( x ) , g ( x ) ) max(f(x), g(x)), min(f(x), g(x)) max(f(x),g(x)),min(f(x),g(x))就想到了等式:
m a x ( f ( x ) , g ( x ) ) = 1 2 [ f ( x ) + g ( x ) + ∣ f ( x ) − g ( x ) ∣ ] m i n ( f ( x ) , g ( x ) ) = 1 2 [ f ( x ) + g ( x ) − ∣ f ( x ) − g ( x ) ∣ ] max(f(x), g(x)) = \frac{1}{2}[f(x) + g(x) + |f(x) - g(x)|] \\ min(f(x), g(x)) = \frac{1}{2}[f(x) + g(x) - |f(x) - g(x)|] max(f(x),g(x))=21[f(x)+g(x)+f(x)g(x)]min(f(x),g(x))=21[f(x)+g(x)f(x)g(x)]
根据前面的推论很容易就能看出是可积的。

2

φ \varphi φ是可积分,说明 D ( φ ) D(\varphi) D(φ)是零测集,则存在可数个开区间 I n I_n In组成 D ( φ ) D(\varphi) D(φ)的一个开覆盖,且 ∑ n ∞ I n < ϵ \sum_n^{\infin} I_n < \epsilon nIn<ϵ
可积充分必要条件 = > ∑ i n w i Δ x i < ϵ => \sum_i^n w_i \Delta x_i < \epsilon =>inwiΔxi<ϵ。学着前面证明充要的方法,照猫画虎即可。
令划分 π = a < x 0 < . . . < x n < b \pi = a<x_0 <...<x_n<b π=a<x0<...<xn<b,且 ∣ π ∣ < δ |\pi| < \delta π<δ
D ( φ ) D(\varphi) D(φ)的开覆盖是 ( α n , β n ) (\alpha_n, \beta_n) (αn,βn),则 K = [ a , b ] / ( U n ∞ ( α n , β n ) ) K = [a, b]/(U_{n}^{\infin}(\alpha_n, \beta_n)) K=[a,b]/(Un(αn,βn)),这样就把 [ a , b ] [a, b] [a,b]分成了两拨, A A A包含了K类, B B B不包含K类。
所以对于 f f f的积分有:
∑ n n w i Δ x i = ∑ A w i Δ x i + ∑ B w i Δ x i 对 于 ∑ A w i Δ x i 沿 用 书 本 证 明 方 法 : 先 从 φ 开 始 看 起 , 取 x ∈ k , 而 ∣ x i − x i − 1 ∣ < ∣ π ∣ < δ , ∣ φ ( x 1 ) − φ ( x 2 ) ∣ < = ∣ φ ( x 1 ) − φ ( x ) ∣ + ∣ φ ( x 2 ) − φ ( x ) ∣ < 2 ϵ ( 引 理 ) 令 δ = ϵ , 因 为 f 连 续 , 所 以 ∣ φ ( x 1 ) − φ ( x 2 ) ∣ < δ , ∣ f ( φ ( x 1 ) ) − f ( φ ( x 2 ) ) ∣ < ϵ ∴ ∑ A w i Δ x i < = ϵ ∑ Δ x i = ( b − a ) ϵ \sum_{n}^n w_i \Delta x_i = \sum_A w_i \Delta x_i + \sum_B w_i \Delta x_i \\ 对于\sum_A w_i \Delta x_i 沿用书本证明方法:\\ 先从\varphi开始看起,取x \in k,而|x_{i} - x_{i-1}| < |\pi| < \delta, \\ |\varphi(x_1) - \varphi(x_2)| <= |\varphi(x_1) - \varphi(x)| + |\varphi(x_2) - \varphi(x)| < 2\epsilon(引理) \\ 令\delta = \epsilon,因为f连续,所以|\varphi(x_1) - \varphi(x_2)| < \delta, |f(\varphi(x_1)) - f(\varphi(x_2))| < \epsilon \\ \therefore \sum_A w_i \Delta x_i <= \epsilon \sum \Delta x_i = (b-a)\epsilon nnwiΔxi=AwiΔxi+BwiΔxiAwiΔxi沿φxkxixi1<π<δ,φ(x1)φ(x2)<=φ(x1)φ(x)+φ(x2)φ(x)<2ϵδ=ϵfφ(x1)φ(x2)<δ,f(φ(x1))f(φ(x2))<ϵAwiΔxi<=ϵΔxi=(ba)ϵ
后面也是:
因 为 φ 可 积 , f 在 闭 区 间 连 续 , 所 以 都 有 界 的 。 ∑ B w i Δ x i < w ∑ B Δ x i 而 x 不 属 于 K , 那 么 x 属 于 U ( α i , β i ) , 则 ( x i − 1 , x i ) ∈ U ( α i , β i ) ∴ ∑ B Δ x i < = ∑ ( β n − α n ) < ϵ ∴ ∑ B w i Δ x i < ϵ 因为\varphi可积, f在闭区间连续,所以都有界的。 \\ \sum_B w_i \Delta x_i < w \sum_B \Delta x_i \\ 而x不属于K,那么x属于U(\alpha_i, \beta_i),则(x_{i-1}, x_i) \in U(\alpha_i, \beta_i) \\ \therefore \sum_B \Delta x_i <= \sum (\beta_n - \alpha_n) < \epsilon \\ \therefore \sum_B w_i \Delta x_i < \epsilon φfBwiΔxi<wBΔxixKxU(αi,βi)(xi1,xi)U(αi,βi)BΔxi<=(βnαn)<ϵBwiΔxi<ϵ
可证

3

f ( x ) = φ ( x ) = R i e m a n n ( x ) f(x) = \varphi(x) = Riemann(x) f(x)=φ(x)=Riemann(x)
f φ ( x ) = { 1 , if x is R/Q 1 q , if x is Q f \varphi(x)= \begin{cases} 1, & \text {if x is R/Q} \\ \frac{1}{q}, & \text{if x is Q} \end{cases} fφ(x)={1,q1,if x is R/Qif x is Q
∣ x − x 0 ∣ < δ |x - x_0| < \delta xx0<δ,当 x ∈ Q x \in Q xQ,沿着有理数逼近极限是0,当x沿着无理数逼近是1,在任意一个点都不连续。(黎曼函数是有理点不连续,无理点不连续)
也可以让 f ( x ) f(x) f(x)是黎曼函数, g ( x ) = { 1 x ∈ ( 0 , 1 ] 0 x = 0 g(x) = \begin{cases} 1 & x \in (0, 1] \\ 0 & x = 0 \end{cases} g(x)={10x(0,1]x=0,这样就变成迪利克雷了。

4

求积分值还是得看上下和。
∑ m i Δ x i < ∫ a b f ( x ) d x < ∑ M i Δ x i \sum m_i \Delta x_i < \int_a^b f(x)dx < \sum M_i \Delta x_i miΔxi<abf(x)dx<MiΔxi,任意区间都有 f ( x 1 ) f ( x 2 ) < = 0 f(x_1)f(x_2) <= 0 f(x1)f(x2)<=0,则 f ( x 1 ) < = 0 , f ( x 2 ) > = 0 f(x_1) <= 0,f(x_2) >=0 f(x1)<=0f(x2)>=0,所以每一个区间的 M i > = 0 , m i < = 0 M_i >= 0, m_i <= 0 Mi>=0,mi<=0,而 f ( x ) f(x) f(x)可积,上下和相等( ∑ m i Δ x i < = 0 , ∑ M i Δ x i > = 0 \sum m_i \Delta x_i <= 0,\sum M_i \Delta x_i >= 0 miΔxi<=0MiΔxi>=0),所以 ∫ a b f ( x ) d x = 0 \int_a^b f(x)dx = 0 abf(x)dx=0

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值