实数的完备性
对于任何非空有上界的集合
A
,其上界b的集合B含有最小元
1)
b′
是集合A的上界,即对于一切
a∈A
,成立
b≥a
;
2)
b′
是集合
B
的最小元素,也就是说对于一切
元素
b′
叫做集合A的上确界(记作:
b′=supA
).
同样的,对于有下界的集合
A
,其下界的集合
极限与数值计算
利用数列的极限存在一常数,可以迭代计算出该常数,下面举几个例子。
1. Heron迭代
xn+1=12(xn+axn)
其中 a 是正常数,
单调递减且有下界的数列有极限等于 inf(an) .
得出
limn→∞xn+1=12(limn→∞xn+alimn→∞xn)
得到 limn→∞xn=a√ .
这种迭代方法的精彩之处在于,它对于初值不敏感,并且计算过程中出现的错误,也会在接下来的迭代过程中得到修正。
同时,我们还可以计算出迭代过程的收敛速度,从等式
xn+1±a√=(xn±a√)22xn,
得到
xn+1−a√xn+1+a√=(xn−a√xn+a√)2,
令 x1−a√x1+a√=q . 对于 x1>0,有|q|<1 .然后得到
xn−a√xn+a√=q2n−1,
因此
xn=1+q2n−11−q2n−1a√,
收敛速度
Δn=xn−a√=2q2n−11−q2n−1a√
2. 开普勒方程
同样可以使用逐次迭代求解开普勒方程
x−asinx=y(0<a<1).
令
x0=y,xn=y+asinxn−1.
参考资料:数学分析讲义(第3版)
本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议进行许可。