关于数值微分精确值的问题

二阶精度的二阶微商的中心差商公式

f^{''}(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^{2}}

五点

f^{''}(x) = \frac{-f(x+2h)+16f(x+h)-30f(x)+16f(x-h)-f(x+2h))}{12h^{2}}

附上四阶精度的二阶微商的中心差商公式

f^{''}(x) = \frac{2(f(x+3h)+f(x-3h)) - 27(f(x+2h)+f(x-2h)) + 270 (f(x+h)+f(x-h)) -490 f(x)}{180h^{2}}

h取不同值经过计算

三点公式h取E-5时最为精确

与五点公式翔对比,似乎五点公式更为贴近原曲线形状,但计算误差、相对误差均是E-5最佳

附上Jacob Williams大佬的一张,似乎对此类方法很有启示

附上启发很大的中科大张瑞老师的数值微分的讲义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值