8.softmax回归

1. 关于回归和多类分类

在这里插入图片描述

分类问题从回归的单输出变成了多输出,这个多输出的个数=类别的个数
置信度:置信度一词来自统计学,而统计学的本质是,用抽样的数据去估计整体的真实分布。例如,样本均值估计整体均值;还有,频率近似概率。而置信度的含义就是,你在用样本估计整体的时候,所得到的结论的“可信程度”,或者说,是对自己所的结论的一个量化的概率评价(打分)

2.从回归到多分类–均方损失

在这里插入图片描述

  1. 假设有n个类别,那么可以用最简单的一位有效编码来进行编码,标号就是一个长为n的向量。这个向量中,只有一个元素为1,对应的下标是第i个类别,其余元素为0。
  2. 如果训练出了一个模型,在做预测的时候,选取i使得最大化Oi的置信度的值作为预测,这个i就是预测的标号

3. 从回归到多类分类–无校验比例

在这里插入图片描述
正确类y的置信度oy要远远大于其他非正确类的oi,写成数学就是希望oy-oi要大于某一个阈值(oi是预测其他类的概率,oy是预测正确类的概率)

4. 从回归到多类分类–校验比例

在这里插入图片描述
希望使得输出是一个概率,现在的输出是o1~on的向量,将softmax作用到o上看,得到一个长为n的向量y_hat,每个元素非负,且相加为1.

5. softmax 和 交叉熵损失

在这里插入图片描述
解释: 假设标签y将是一个三维向量, 其中(1,0,0)对应于“猫”、(0,1,0)对应于“鸡”、(0,0,1)对应于“狗”:

在这里插入图片描述
现在去预测一个样本,假设这个样本是鸡,也就是真实的概率是y=[0,1,0],而我们经过softmax预测之后得到的预测概率是y_hat= [0.1,0.8,0.1],那么:

损失函数l(y,y_hat) = -0* 0.1 - 1* 0.8 - 0* 0.1 = -1 * 0.8 , 得到的就是对于真实类别y预测得到的概率y_hat。因为真实样本向量中只有一个为1,其余为0,那么上图中的计算结果中的右下角的y就是表示,这个样本的真实类别y。

对于真实类别的预测值求log,再求负数,所以可以看出,对分类问题来讲,不关心对对于非正确类的预测值,我们只关心对于正确类的预测值,它的置信度要够大

下面对于如何得到梯度的过程进行展开:

在这里插入图片描述
在这里插入图片描述
最后,根据计算结果可以发现,梯度就等于预测概率和真实概率的差值。

6. 总结

  • softmax回归是一个多类分类问题
  • 使用softmax操作值得到每个类的预测置信度(概率,非负,和相加为1)
  • 使用交叉熵来衡量预测和标号的区别(用交叉熵做损失函数)
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: softmax回归和logistic回归都是常见的分类算法。 其中,logistic回归是一种二分类算法,用于将输入数据分为两个类别。它通过sigmoid函数将输入数据映射到和1之间的概率值,然后根据阈值将其分类为正类或负类。 而softmax回归是一种多分类算法,用于将输入数据分为多个类别。它通过softmax函数将输入数据映射到每个类别的概率值,然后将概率最大的类别作为分类结果。 两种算法都是基于概率模型的分类方法,但softmax回归适用于多分类问题,而logistic回归适用于二分类问题。 ### 回答2: softmax回归和logistic回归都是分类算法,它们都属于广义线性模型的范畴,但softmax回归是logistic回归的一种扩展。 Logistic回归是基于逻辑斯蒂函数的分类算法,该函数能够将输入的连续值通过sigmoid函数映射到0-1的概率值,因此logistic回归适用于二分类问题。由于sigmoid函数的取值范围是0-1,它可以被理解为是将输入“压缩”到了可接受的范围内,并且逻辑斯蒂函数求导简单。因此,logistic回归在机器学习中广泛应用于二分类问题。 而softmax回归是logistic回归的多类别版本,也称为多项式逻辑斯蒂回归。在softmax回归中,将输入的样本特征通过softmax函数进行变换得到0-1之间的概率值,这些概率值加和为1。因此,softmax回归适用于多分类问题。 softmax回归相对于logistic回归的优越之处在于,对于多分类问题,softmax回归可以更好地处理标签互斥的问题,可以将多个二分类问题转化为单个多分类问题。在神经网络中,softmax回归常常用于输出层的分类问题。 在实际应用中,softmax回归和logistic回归可以被当做常规分类算法中的基础理论。它们不仅仅被用于机器学习领域,还被广泛地用于自然语言处理、推荐系统、图像分类等领域。 ### 回答3: softmax回归和logistic回归都是用于分类问题的监督学习算法。两者基于的核心思想都是使用线性模型进行分类,然后通过激活函数将输出映射到概率空间,最终输出对类别的预测概率。下面将分别介绍两种方法。 1. Logistic回归 Logistic回归又叫逻辑回归,它是一种用于二分类问题的线性模型。在logistic回归中,使用sigmoid函数作为激活函数将线性模型的输出转换成一个0到1之间的概率值。sigmoid函数为: $$sigmoid(z)=\frac{1}{1+e^{-z}}$$ 其中,$z=w^Tx+b$,$w$和$b$分别为模型参数,$x$为输入。logistic回归的目标是最大化似然函数,即使得预测概率与实际标签之间的差异最小。损失函数为: $$J(w,b)=\frac{1}{m}\sum_{i=1}^{m}[-y^{(i)}log(\hat{y}^{(i)})-(1-y^{(i)})log(1-\hat{y}^{(i)})]$$ 其中,$m$为数据集大小,$y^{(i)}$为实际的类别标签,$\hat{y}^{(i)}$为预测的类别概率。 2. Softmax回归 Softmax回归又叫多分类逻辑回归,用于多分类问题。softmax回归将线性模型的输出$z$映射到$K$个类别的概率,并且不同类别间的概率是互斥的。softmax函数为: $$softmax(z_i)=\frac{e^{z_i}}{\sum_{j=1}^{K}e^{z_j}}$$ 其中,$K$为类别数,$z_i=w_i^Tx+b_i$,$w_i$和$b_i$分别为第$i$类别的模型参数。softmax回归的目标是最大化似然函数,损失函数为: $$J(w_{1...K},b_{1...K})=-\frac{1}{m}\sum_{i=1}^{m}\sum_{j=1}^{K}1(y^{(i)}=j)log\frac{e^{w_j^Tx^{(i)}+b_j}}{\sum_{k=1}^{K}e^{w_k^Tx^{(i)}+b_k}}$$ 其中,$m$为数据集大小,$y^{(i)}$为样本$i$的类别标签。 总之,softmax回归和logistic回归都是监督学习算法,利用线性模型加激活函数将输入映射到概率空间中进行分类预测softmax回归适用于多分类问题,而logistic回归适用于二分类问题。在实际应用中,两种方法都是常见的分类算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值