2022年高考题
一、选择题
1、已知全集 U = { x ∣ − 3 < x < 3 } U = \{x|-3<x<3\} U={ x∣−3<x<3},集合 A = { x ∣ − 2 < x ≤ 1 } A=\{x|-2<x\leq1\} A={ x∣−2<x≤1},则 C U A = C_{U}A= CUA=
(A) (-2,1] \qquad B. (-3,-2) ∪ \cup ∪[1,3)
© [-2,1) \qquad D. (-3,-2] ∪ \cup ∪(1,3)
- 答案:D
2、若复数 z z z满足 i ⋅ z = 3 − 4 i i\cdot z = 3-4i i⋅z=3−4i,则 ∣ z ∣ = |z|= ∣z∣=
(A) 1 \qquad B. 5
© 7 \qquad D. 25
- 答案:B
3、若直线 2 x + y − 1 = 0 2x+y-1=0 2x+y−1=0是圆 ( x − a ) 2 + y 2 = 1 (x-a)^2+y^2=1 (x−a)2+y2=1的一条对称轴,则 a = a= a=
(A) 1 2 \frac{1}{2} 21 \qquad B. − 1 2 -\frac{1}{2} −21
© 1 \quad \quad \quad D. -1
- 答案:A
4、已知函数 f ( x ) = 1 1 + 2 x f(x)=\frac{1}{1+2^x} f(x)=1+2x1,则对任意实数 x x x,有
(A) f ( − x ) + f ( x ) = 0 f(-x)+f(x)=0 f(−x)+f(x)=0 \qquad B. f ( − x ) − f ( x ) = 0 f(-x)-f(x)=0 f(−x)−f(x)=0
© f ( − x ) + f ( x ) = 1 f(-x)+f(x)=1 f(−x)+f(x)=1 \qquad D. f ( − x ) − f ( x ) = 1 3 f(-x)-f(x)=\frac{1}{3} f(−x)−f(x)=31
- 答案:C
5、已知函数 f ( x ) = c o s 2 x − s i n 2 x f(x)=cos^2x-sin^2x f(x)=cos2x−sin2x,则
(A) f ( x ) f(x) f(x)在 ( − π 2 , − π 6 ) (-\frac{\pi}{2},-\frac{\pi}{6}) (−2π,−6π)上单调递增
(B) f ( x ) f(x) f(x)在 ( − π 4 , π 12 ) (-\frac{\pi}{4},\frac{\pi}{12}) (−4π,12π)上单调递增
© f ( x ) f(x) f(x)在 ( 0 , π 3 ) (0,\frac{\pi}{3}) (0,3π)上单调递减
(D) f ( x ) f(x) f(x)在 ( π 4 , − 7 π 12 ) (\frac{\pi}{4},-\frac{7\pi}{12}) (4π</