数据分析之用户画像

本文详细介绍了用户画像的概念、价值、创建方法及其在数据分析中的应用。从数据收集、画像框架构建到用户标签的八大要素,揭示了如何通过用户画像进行用户分析、精准营销和业务理解。同时,探讨了用户画像的完善过程,涉及用户属性、消费特征、活跃表现及用户分层,如RFM模型,最后阐述了用户画像在运营活动、异常情况分析等方面的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、关注问题

1、究竟大家都说的用户画像是什么?
2、最终做出来的用户画像是什么样子的?
3、用户画像是怎么做出来的呢?
4、用户画像做出来又该怎么去用呢?

二、用户画像背景

得流量者得天下

“知己知彼,百战不殆”----《孙子 · 谋攻篇》

“大数据杀熟”

深入分析用户使用场景

实现精准化运营

本质原因:降低获客成本

三、定义

用户画像 可以简单理解成是海量数据的标签,根据用户的目标、行为和观点的差异,将他们区分为不同的类型,然后每种类型中抽取出典型特征,赋予名字、照片、一些人口统计学要素、场景等描述,形成了一个人物原型(personas)。

用户画像就是与该用户相关联的数据的可视化展现,一句话总结就是:用户信息标签化。

在这里插入图片描述

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玩转数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值