RNN/LSTM原理与 PyTorch 时间序列预测实战

🕰️ RNN / LSTM 原理与 PyTorch 时间序列预测实战

在处理时间序列数据、语音信号、文本序列等连续性强的问题时,循环神经网络(RNN)及其改进版本 LSTM(长短期记忆网络)是最常见也最有效的模型之一。本文将深入讲解 RNN 和 LSTM 的核心原理,并通过 PyTorch 实现一个时间序列预测案例,帮助你从理论走向实战。


📚 一、什么是 RNN?

传统的神经网络无法处理序列之间的依赖关系。而 循环神经网络(RNN) 引入“记忆”机制,可以将过去的信息保留下来用于当前输出的计算。

🧠 RNN 的结构特点:

  • 当前时刻的输出依赖于当前输入上一时刻的隐藏状态
  • 存在时间上的权重共享
  • 非常适合处理时间序列、语言模型等任务。

✏️ 数学表达:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值