因子分析在SPSS中的应用
根据指标体系求得分做评价模型,因子分析是个不错的选择,因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少的几个综合指标(降维),而且这几个综合指标不相关,可解决线性回归中多重共线性问题。下面介绍因子分析基本步骤,如何使用SPSS进行因子分析
一、因子分析基本步骤
1.因子分析适用检验
使用因子分析,需要原有变量之间有较强的相关关系,判断是否相关有两种方法:
- 可以采用相关系数矩阵来判断
- 巴特利特球度检验
原假设H0为相关系数矩阵为单位矩阵,若拒绝原假设,认为相关系数矩阵不太可能为单位矩阵,原有变量适合做因子分析 - KMO检验
KMO统计量取值在0~1之间,KMO值越接近于1,意味着变量间的相关性越强,原变量越适合做因子分析(一般>0.6可认为可做因子分析)
2.提取公共因子
在处理输出前,需对数据进行标准化,利用主成分法估计因子载荷矩阵,并选择合适方法对因子载荷矩阵进行旋转(一般为方差最大法),根据总方差解释累计贡献度大小(一般保持在85%左右),确定所要提取公共因子的个数
3.计算各因子和综合得分
根据得出的因子得分系数矩阵,可以算出各公共因子的得分;最后可根据各公共因子对应特征值方差贡献百分比作为权重,计算总的综合评分
二.SPSS操作
1.操作
导入数据后,选择菜单【分析】–>【降维】–>【因子】
将各个指标数据添加到变量框中
点击【描述】,可根据自己需求点击相应选项,但以下要记得点上噢,检验要用
点击继续后,点击【提取】选项,选择如下
点击继续,选择【旋转】,设置选项点击【最大方差法】与【载荷图】
继续后,点击【得分】
最后,设置点击【选项】
最后点击确定,得出分析结果
三、结果分析
1.因子检验结果
KMO值>0.7,且巴特利特球形度检验在1%显著水平下通过检验,说明可以使用因子分析
2.提取公共因子结果
通过总方差分析表,可以提取出2个公共因子,可以解释方差比例累计达到75.34%
3.成分矩阵与旋转后的成分矩阵
成分矩阵表示为未使用旋转方法时使用因子能解释各个变量的比例(也可以理解为各变量信息被主成分提取了多少);旋转后的成分矩阵即为利用最大方差法旋转后的成分矩阵,可利用该矩阵提取变量成分多少给公共因子命名
4.成分得分系数矩阵
可根据成分得分系数矩阵计算公共因子1、2的综合得分;如果要计算最后的综合得分,可根据公共因子1、2所占的方差贡献比作为权重,进行加权计算;
详细的过程,以案例形式进行整理,如有需要,可进行下载
https://download.csdn.net/download/weixin_47570444/88407497