YOLO在1660系列显卡上训练,验证时没有精度,损失为nan

本文介绍了如何在Ultralytics深度学习模型的训练过程中,通过将`amp=True`改为`amp=False`以及在`engine/validator.py`中的`half`设置为`False`,来调整模型的训练精度设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.关掉混合精度训练,在训练参数设置amp=False

2.ultralytics-main/ultralytics/engine/validator.py中的half设置为False

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值