softmax回归+损失函数+图片分类数据集

知识点积累

# mnist_train[0][0].shape,mnist_train[0] 表示 MNIST 训练集中的第一个样本,而 [0] 则表示取该样本的第一个元素。
# 在 MNIST 数据集中,每个样本由一对输入特征和标签组成。因此,mnist_train[0] 表示第一个样本,其中包含了输入特征和标签。而 [0] 表示取该样本的输入特征部分,即图像部分。
# 综合起来,mnist_train[0][0] 表示 MNIST 训练集中第一个样本的输入特征。


d2l.use_svg_display()
# 通过调用 d2l.use_svg_display() 可以将图形以 SVG 格式显示在 Jupyter Notebook 或其他支持 SVG 显示的环境中。与常规的位图格式相比,SVG 格式具有无损放缩的优势,图像质量更好且不会模糊。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    # imgs:包含图像的列表或张量。
    # num_rows:图像展示的行数。
    # num_cols:图像展示的列数。
    # titles:可选参数,图像的标题。
    # scale:可选参数,放缩比例因子。


    # 将返回的图形对象赋值给变量    _,
    # 将子图对象数组赋值给变量    axes。
    # 使用下划线    _    表示忽略该变量,意味着我们不需要使用图形对象,只需要子图对象数组。

for i, (ax, img) in enumerate(zip(axes, imgs)):
    # enumerate() 函数用于同时遍历多个序列,并返回元组 (index, item),其中 index 是元素在序列中的索引,item 是元素的值。
    # zip(axes, imgs) 将 axes 和 imgs 按索引一一配对,返回一个迭代器,每次迭代时返回一个包含对应索引处的 axes 和 imgs 元素的元组。

    # 在循环中,i    表示当前元素的索引,
    # (ax, img)    表示当前的子图对象    ax    和对应的图像    img。

torch.is_tensor(img) # 函数用于判断 img 是否为张量类型。如果条件成立,表示 img 是一个张量,就会执行下面的代码块。

ax.imshow(img.numpy()) #将张量 img 转换为 NumPy 数组,然后在子图 ax 上显示图像。imshow() 函数用于绘制图像。

ax.set_title(titles[i]) #将标题 titles[i] 设置为子图 ax 的标题。titles 是一个可选的图像标题列表,使用索引 i 获取当前图像的标题。

transforms.ToTensor() #是 PyTorch 提供的一个图像转换函数,用于将图像转换为张量。它会将图像的数据类型从 PIL.Image 转换为 torch.Tensor,并将像素值缩放到 0 到 1 的范围。

trans.insert(0, transforms.Resize(resize)) #将这个大小调整转换函数插入到转换列表的最前面,确保在应用其他转换函数之前,图像的大小已经被调整到指定的尺寸。

trans = transforms.Compose(trans),#将转换列表 trans 组合成一个名为 trans 的组合转换操作。之后,可以将这个组合转换操作应用到图像上,例如使用 trans(image) 对图像 image 进行一系列的转换操作。通过组合多个转换函数,可以方便地对图像进行多步的预处理或增强操作。

torch.exp() #函数计算输入张量的指数值

torch.sum() #函数计算输入张量的元素之和。通过指定参数 dim=1,我们对输入张量的每一行进行求和操作。设置 keepdim=True 则保持结果张量的维度。

isinstance(net, torch.nn.Module) #函数来判断变量 net 是否为 torch.nn.Module 类型的实例。

net.eval() #是调用模型的方法,用于将模型设置为评估模式。

torch.normal(0, 1, (2, 5))
#均值 0:是指生成的随机数的均值,这里设定为 0。
# 标准差 1:是指生成的随机数的标准差,这里设定为 1。
# 大小 (2, 5):是指生成的随机数张量的大小,这里设定为一个 2 行 5 列的张量。

len(y_hat.shape) > 1 and y_hat.shape[1] > 1
# len(y_hat.shape)代表样本数量
#y_hat.shape[1]代表样本预测值

 图像分类数据集

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans,
                                                download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans,
                                               download=True)


def get_fashion_mnist_labels(labels):
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)  # 传进来的图像尺寸,scale 为放缩比例因子
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    print(_)
    print(axes)  # axes 为构建的两行九列的画布
    axes = axes.flatten()
    print(axes)  # axes 变成一维数据
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
            ax.set_title(titles[i])
        else:
            # PIL图片
            ax.imshow(img)


X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))  # X,y 为仅抽取一次的18个样本的图片、以及对应的标签值
show_images(X.reshape(18,28,28),2,9,titles=get_fashion_mnist_labels(y))

batch_size = 256

def get_dataloader_workers():
    """使用4个进程来读取的数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers())

timer = d2l.Timer() # 计时器对象实例化,开始计时
for X,y in train_iter:  # 遍历一个batch_size数据的时间
    continue
print(f'{timer.stop():.2f}sec')
d2l.plt.show()

def load_data_fashion_minst(batch_size, resize=None):
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans,   download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans,  download=True)
    return (data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size,shuffle=True,num_workers=get_dataloader_workers()))

softmax回归的从零开始实现


import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
from IPython import display


def get_dataloader_workers():
    """使用4个进程来读取的数据"""
    return 0


def load_data_fashion_mnist(batch_size, resize=None):
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))  # 如果有Resize参数传进来,就进行resize操作
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="01_data/01_DataSet_FashionMNIST", train=True, transform=trans,
                                                    download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="01_data/01_DataSet_FashionMNIST", train=False, transform=trans,
                                                   download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=True, num_workers=get_dataloader_workers()))


batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)  # 返回训练集、测试集的迭代器

num_inputs = 784
num_outputs = 10
w = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)


def softmax(X):
    X_exp = torch.exp(X)  # 每个都进行指数运算
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制


# 实现softmax回归模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, w.shape[0])), w) + b)  # -1为默认的批量大小,表示有多少个图片,每个图片用一维的784列个元素表示


def cross_entropy(y_hat, y):
    return -torch.log(y_hat[range(len(y_hat)), y])  # y_hat[range(len(y_hat)),y]为把y的标号列表对应的值拿出来。传入的y要是最大概率的标号


def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:  # y_hat.shape[1]>1表示不止一个类别,每个类别有各自的概率
        y_hat = y_hat.argmax(axis=1)  # y_hat.argmax(axis=1)为求行最大值的索引
    cmp = y_hat.type(y.dtype) == y  # 先判断逻辑运算符==,再赋值给cmp,cmp为布尔类型的数据
    return float(cmp.type(y.dtype).sum())  # 获得y.dtype的类型作为传入参数,将cmp的类型转为y的类型(int型),然后再求和


# 可以评估在任意模型net的准确率
def evaluate_accuracy(net, data_iter):
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):  # 如果net模型是torch.nn.Module实现的神经网络的话,将它变成评估模式
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数,metric为累加器的实例化对象,里面存了两个数
    for X, y in data_iter:
        metric.add(accuracy(net(X), y), y.numel())  # net(X)将X输入模型,获得预测值。y.numel()为样本总数
    return metric[0] / metric[1]  # 分类正确的样本数 / 总样本数


# Accumulator实例中创建了2个变量,用于分别存储正确预测的数量和预测的总数量
class Accumulator:
    """在n个变量上累加"""

    def __init__(self, n):
        self.data = [0, 0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]  # zip函数把两个列表第一个位置元素打包、第二个位置元素打包....

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# 训练函数
def train_epoch_ch3(net, train_iter, loss, updater):
    if isinstance(net, torch.nn.Module):
        net.train()  # 开启训练模式
    metric = Accumulator(3)
    for X, y in train_iter:
        y_hat = net(X)
        l = loss(y_hat, y)  # 计算损失
        if isinstance(updater, torch.optim.Optimizer):  # 如果updater是pytorch的优化器的话
            updater.zero_grad()
            l.mean().backward()  # 这里对loss取了平均值出来
            updater.step()
            metric.add(float(l) * len(y), accuracy(y_hat, y), y.size().numel())  # 总的训练损失、样本正确数、样本总数
        else:
            l.sum().backward()
            updater(X.shape[0])
            metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    return metric[0] / metric[2], metric[1] / metric[2]  # 所有loss累加除以样本总数,总的正确个数除以样本总数


class Animator:
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        d2l.plt.draw()
        d2l.plt.pause(0.001)
        display.display(self.fig)
        display.clear_output(wait=True)


# 总训练函数
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):  # 变量num_epochs遍数据
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)  # 返回两个值,一个总损失、一个总正确率
        test_acc = evaluate_accuracy(net, test_iter)  # 测试数据集上评估精度,仅返回一个值,总正确率
        animator.add(epoch + 1, train_metrics + (test_acc,))  # train_metrics+(test_acc,) 仅将两个值的正确率相加,
    train_loss, train_acc = train_metrics


# 小批量随即梯度下降来优化模型的损失函数
lr = 0.1


def updater(batch_size):
    return d2l.sgd([w, b], lr, batch_size)


num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)


# def predict_ch3(net, test_iter, n=6):
#     for X, y in test_iter:
#         break  # 仅拿出一批六个数据
#     trues = d2l.get_fashion_mnist_labels(y)
#     preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
#     titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
#     d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
#
#
# predict_ch3(net, test_iter)

softmax使用框架

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# Softmax回归的输出是一个全连接层
# PyTorch不会隐式地调整输入的形状
# 因此,我们定义了展平层(flatten)在线性层前调整网络输入的形状
net = nn.Sequential(nn.Flatten(),nn.Linear(784,10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01) # 方差为0.01

net.apply(init_weights)
print(net.apply(init_weights)) # net网络的参数用的是init_weights初始化参数

# 在交叉熵损失函数中传递未归一化的预测,并同时计算softmax及其对数
loss = nn.CrossEntropyLoss()
# 使用学习率为0.1的小批量随即梯度下降作为优化算法
trainer = torch.optim.SGD(net.parameters(),lr=0.01)

num_epochs = 10
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值