Cohen‘s d 结果怎么看

Cohen’s d 是一种衡量效应大小(effect size)的方法,主要用于描述两组之间的差异大小。它的值反映了两组均值差异相对于标准差的大小。通常,Cohen’s d 用于衡量实验组与对照组之间的效应,或者其他两组数据之间的差异。

Cohen’s d 的数值可以解释为:

  • 小效应(0.2 以下):表示两组之间的差异相对较小,可能不太具有实际意义。
  • 中等效应(0.5):表示两组之间的差异有一定的实际意义,足够显著。
  • 大效应(0.8 以上):表示两组之间的差异非常显著,差异非常大。

这些标准是 Cohen 提出的,但也可以根据研究领域和具体情境有所调整。例如,在医学研究中,即使是小效应(如 0.2)也可能具有实际意义,而在心理学研究中,大效应才是较为重要的标志。

总体来说,Cohen’s d 是一个衡量两组之间效应大小的有用工具,可以帮助判断实验结果的实际意义,而不仅仅是统计显著性。

在 R 中,计算 Cohen’s d 可以通过使用现成的函数来完成。

effsize`包)

effsize 包提供了一个函数来直接计算 Cohen’s d。

首先,安装并加载该包:

install.packages("effsize")
library(effsize)

然后,假设我们有两组数据 group1group2,可以使用 cohen.d 函数来计算 Cohen’s d:

# 示例数据
group1 <- c(50, 52, 47, 49, 51, 48, 53, 50, 46, 54)
group2 <- c(45, 46, 44, 43, 48, 42, 47, 44, 45, 42, 43, 46)

# 计算 Cohen's d
cohen_d_result <- cohen.d(group1, group2)
cohen_d_result

这将输出 Cohen’s d 的值以及其置信区间和其他相关统计量。

Cohen's d

d estimate: 2.41138 (large)
95 percent confidence interval:
   lower    upper 
1.239732 3.583028 

从结果来看,Cohen’s d 值为 2.41138,并且它落在 large(大效应)范围内。通常来说,Cohen’s d 大于 0.8 被认为是大效应,而你的结果远远超过了这一值,说明两组之间的差异非常显著。

此外,95% 置信区间为 [1.239732, 3.583028],这意味着我们有 95% 的信心认为 Cohen’s d 的真实值位于该区间内。因此,差异的效应大小在统计上非常显著,并且具有较大的实际意义。

这种大效应可能在实际应用中具有重要的影响,特别是在涉及临床或社会学领域时,可能表示一种显著的改变或影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值