数据结构知识点总结4 排序

本文详细介绍了排序算法,包括插入排序、希尔排序、选择排序、堆排序、冒泡排序、快速排序和归并排序,讨论了它们的时间复杂度、空间复杂度和稳定性,并给出了具体实现。重点探讨了快速排序的优化策略,以及归并排序在外排序中的应用。
摘要由CSDN通过智能技术生成

排序
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
常见排序算法的实现

  1. 插入排序
    基本思想: 直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。 实际中我们玩扑克牌时,就用了插入排序的思想
  • 直接插入排序:* 当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与
    array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移
    直接插入排序的特性总结:
    元素集合越接近有序,直接插入排序算法的时间效率越高
    时间复杂度:O(N^2)
    空间复杂度:O(1),它是一种稳定的排序算法
    稳定性:稳定
    void InsertSort(int* a, int n)
{
	// 多趟排序
	for (int i = 0; i < n - 1; ++i)
	{
		// 把tmp插入到数组的[0,end]有序区间中
		int end = i;
		int tmp = a[end+1];
		while (end >= 0)
		{
			if (tmp < a[end])
			{
				a[end + 1] = a[end];
				--end;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}
  • 希尔排序( 缩小增量排序 ) (1、预排序–>接近有序 2、直接插入排序)
    希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。
    希尔排序的特性总结:
    希尔排序是对直接插入排序的优化。
    当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
    希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N1.3—N2)
    稳定性:不稳定
    void ShellSort(int* a, int n)
{
	// gap > 1的时候,预排序
	// gap == 1的时候,直接插入排序  O(N)
	int gap = n;
	while (gap > 1) // n/3/3/3.../3 == 1  -》 3^x = n  x就是这个while循环跑的次数
	{ 
		gap = (gap / 3 + 1);

		// 最坏的情况:逆序,gap很大的时-》O(N)
		// ...
		// 
		//                   gap很小时本来应该是O(N*N),但是经过前面的预排序,数组已经很接近有序的,所这里还是O(N)
		for (int i = 0; i < n - gap; ++i)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (tmp < a[end])
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else{
					break;
				}
			}

			a[end + gap] = tmp;
		}
		//printf("gap:%d->", gap);
		//PrintArray(a, n);
	}
}
  1. 选择排序
    基本思想: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的 数据元素排完 。
  • 直接选择排序: 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
    若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
    在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
    直接选择排序的特性总结:
    直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
    时间复杂度:O(N^2)
    空间复杂度:O(1)
    稳定性:不稳定
    void SelectSort(int* a, int n)
{
	int left = 0, right = n - 1;
	while (left < right)
	{
		// 选出最大的值和最小的值
		int minIndex = left, maxIndex = left;
		for (int i = left; i <= right; ++i)
		{
			if (a[i] < a[minIndex])
				minIndex = i;

			if (a[i] > a[maxIndex])
				maxIndex = i;
		}

		Swap(&a[left], &a[minIndex]);
		// 如果max和left位置重叠,max被换走了,要修正一下max的位置
		if (left == maxIndex)
		{
			maxIndex = minIndex;
		}

		Swap(&a[right], &a[maxIndex]);
		++left;
		--right;
	}
}

堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
堆排序的特性总结:
堆排序使用堆来选数,效率就高了很多。
时间复杂度:O(N*logN)
空间复杂度:O(1)
稳定性:不稳定
// 堆排序

void AdjustDwon(int* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

//O(N*log(N))
void HeapSort(int* a, int n)
{
	// 升序  建大堆
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		AdjustDwon(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDwon(a, end, 0);
		--end;
	}
}
  1. 交换排序
    基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排 序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
  • 冒泡排序
    冒泡排序的特性总结
    冒泡排序是一种非常容易理解的排序
    时间复杂度:O(N^2)
    空间复杂度:O(1)
    稳定性:稳定
    冒泡排序和插入排序相比:顺序有序,一样好;接近有序,插入好。
void BubbleSort(int* a, int n)
{
	for (int end = n; end > 0; end--)
	{
		int exchange = 0;
		//一趟冒泡排序
		for (int i = 1; i < n; i++) {
			if (a[i - 1] < a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		//没交换说明有序了 可以退出排序
		if (exchange == 0)
		{
			break;
		}
	}
}
  • 快速排序
    快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值(key),按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
    将区间按照基准值划分为左右两半部分的常见方式有: 1. hoare版本 2. 挖坑法 3. 前后指针版本
// hoare版本 -- 左右指针法
int PartSort1(int* a, int left, int right)
{
	// 三数取中
	int midIndex = GetMidIndex(a, left, right);
	Swap(&a[left], &a[midIndex]);

	int keyi = left;
	while (left < right)
	{
		// 找小
		while (left < right && a[right] >= a[keyi])
			--right;

		// 找大
		while (left < right && a[left] <= a[keyi])
			++left;

		Swap(&a[left], &a[right]);
	}
	Swap(&a[keyi], &a[left]);

	return left;
}

// 挖坑法
int PartSort2(int* a, int left, int right)
{
	int midIndex = GetMidIndex(a, left, right);
	Swap(&a[left], &a[midIndex]);

	int key = a[left];
	while (left < right)
	{
		// 找小
		while (left < right && a[right] >= key)
		{
			--right;
		}

		// 放到左边的坑位中,右边就形成新的坑
		a[left] = a[right];

		// 找大
		while (left < right && a[left] <= key)
		{
			++left;
		}

		// 放到右边的坑位中,左边就形成新的坑
		a[right] = a[left];
	}

	a[left] = key;

	return left;
}

// 前后指针法
int PartSort3(int* a, int left, int right)
{
	//int midIndex = GetMidIndex(a, left, right);
	//Swap(&a[left], &a[midIndex]);

	int keyi = left;
	int prev = left, cur = left + 1;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[cur], &a[prev]);
		}

		++cur;
	}

	Swap(&a[keyi], &a[prev]);

	return prev;
}


// 前后指针法
// [begin, end]
void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	// 1、如果这个子区间是数据较多,继续选key单趟,分割子区间分治递归
	// 2、如果这个子区间是数据较小,再去分治递归不太划算
	if (end-begin > 20)
	{
		int keyi = PartSort3(a, begin, end);

		// [begin, keyi-1] keyi [keyi+1, end]
		QuickSort(a, begin, keyi - 1);
		QuickSort(a, keyi + 1, end);
	}
	else
	{
		//HeapSort(a + begin, end - begin + 1);
		InsertSort(a + begin, end - begin + 1);
	}
}
  • 快速排序优化
    三数取中法选key
      int GetMidIndex(int* a, int left, int right)
{
	int mid = (left + right) >> 1;
	// left  mid  right
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else
		{
			return right;
		} 
	}
	else // a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}
  • 对快速排序影响最大的是选key,如果key越接近中位数,则越接近二分,效率越高
    递归到小的子区间时,可以考虑使用插入排序

  • 快速排序非递归
    编译器优化足够好,性能已不是大问题
    递归深度太深时,程序本身没问题,但是栈空间不够,导致溢出,只能改成非递归
    有两种方式:1、改循环(斐波那契数列)2、树遍历非递归和快排非递归等,只能用栈Stack存储数据模拟递归过程

    快速排序的特性总结:
    快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
    时间复杂度:O(N*logN)
    空间复杂度:O(logN)
    稳定性:不稳定

  • 归并排序
    基本思想: 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
    归并排序核心步骤:取小的尾插到下面的数组,直到一个区间结束,再把另外一个区间剩下的数据尾插到最后

    void _Merge(int* a, int* tmp, int begin1, int end1, int begin2, int end2)
{
	int j = begin1;
	int i = begin1;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
			tmp[i++] = a[begin1++];
		else
			tmp[i++] = a[begin2++];
	}

	while (begin1 <= end1)
		tmp[i++] = a[begin1++];

	while (begin2 <= end2)
		tmp[i++] = a[begin2++];

	// 归并完成以后,拷贝回到原数组
	for (; j <= end2; ++j)
		a[j] = tmp[j];
}
    void _MergeSort(int* a, int left, int right, int* tmp)
{
	if (left >= right)
		return;

	int mid = (left + right) >> 1;
	// [left, mid][mid+1,right]
	_MergeSort(a, left, mid, tmp);
	_MergeSort(a, mid+1, right, tmp);

	// 两段有序子区间归并tmp,并拷贝回去
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	_Merge(a, tmp, left, mid, mid + 1, right);
}

void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int)*n);
	if (tmp == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
}
  • 归并排序的特性总结:
    归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
    时间复杂度:O(N*logN)
    空间复杂度:O(N)
    稳定性:稳定

  • 内排序:数据量相对少一些,可以放到内存中排序
    外排序:数据量较大,内存中放不下,数据放到磁盘中排序
    归并排序可以内排序也可外排序
    非比较排序
    思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。
    操作步骤:
    1. 统计相同元素出现次数 2. 根据统计的结果将序列回收到原来的序列中
    计数排序的特性总结:
    1. 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
    2. 时间复杂度:O(MAX(N,范围))
    3. 空间复杂度:O(范围)
    4. 稳定性:稳定

  • 排序的稳定性:数组中相同的值,排完序之后,相对顺序不变,就是稳定的,否则就不稳定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值