一文看懂RNN

一、写在前面

本文将介绍RNN的详细构造和实战,并将其手写实现,再将其应用到歌词创作上。

二、RNN

考虑输入数据存在时间相关性的情况。假设 X t ∈ R n × d \boldsymbol{X}t \in \mathbb{R}^{n \times d} XtRn×d是序列中时间步 t t t的小批量输入, H t ∈ R n × h \boldsymbol{H}t \in \mathbb{R}^{n \times h} HtRn×h是该时间步的隐藏变量。我们保存上一时间步的隐藏变量 H t − 1 \boldsymbol{H}{t-1} Ht1,并引入一个新的权重参数 W h h ∈ R h × h \boldsymbol{W}{hh} \in \mathbb{R}^{h \times h} WhhRh×h,该参数用来描述在当前时间步如何使用上一时间步的隐藏变量。具体来说,时间步 t t t的隐藏变量的计算由当前时间步的输入和上一时间步的隐藏变量共同决定:

H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). Ht=ϕ(XtWxh+Ht1Whh+bh).

与多层感知机相比,我们在这里添加了 H t − 1 W h h \boldsymbol{H}{t-1} \boldsymbol{W}{hh} Ht1Whh一项。由上式中相邻时间步的隐藏变量 H t \boldsymbol{H}t Ht H t − 1 \boldsymbol{H}{t-1} Ht1之间的关系可知,这里的隐藏变量能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。因此,该隐藏变量也称为隐藏状态。由于隐藏状态在当前时间步的定义使用了上一时间步的隐藏状态,上式的计算是循环的。使用循环计算的网络即循环神经网络(recurrent neural network)。

循环神经网络有很多种不同的构造方法。含上式所定义的隐藏状态的循环神经网络是极为常见的一种。若无特别说明,本章中的循环神经网络均基于上式中隐藏状态的循环计算。在时间步 t t t,输出层的输出和多层感知机中的计算类似:

O t = H t W h q + b q . \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. Ot=HtWhq+bq.
综上所述,我们可以画出RNN的结构示意图如下所示。
在这里插入图片描述

循环神经网络的参数包括隐藏层的权重 W x h ∈ R d × h \boldsymbol{W}{xh} \in \mathbb{R}^{d \times h} WxhRd×h W h h ∈ R h × h \boldsymbol{W}{hh} \in \mathbb{R}^{h \times h} WhhRh×h和偏差 b h ∈ R 1 × h \boldsymbol{b}h \in \mathbb{R}^{1 \times h} bhR1×h,以及输出层的权重 W h q ∈ R h × q \boldsymbol{W}{hq} \in \mathbb{R}^{h \times q} WhqRh×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。值得一提的是,即便在不同时间步,循环神经网络也始终使用这些模型参数。因此,循环神经网络模型参数的数量不随时间步的增加而增长。
下面,我们将读取一个涵盖周杰伦的几百手歌曲的歌词的数据集,并已经将歌词切分成字符并将字符转换为索引处理好的数据集来手写构造RNN网络。
首先,我们读取周杰伦专辑歌词数据集:

import time
import math
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F

import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()

为了将词表示成向量输入到神经网络,一个简单的办法是使用one-hot向量。假设词典中不同字符的数量为 N N N(即词典大小vocab_size),每个字符已经同一个从0到 N − 1 N-1 N1的连续整数值索引一一对应。如果一个字符的索引是整数 i i i, 那么我们创建一个全0的长为 N N N的向量,并将其位置为 i i i的元素设成1。该向量就是对原字符的one-hot向量。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。

def one_hot(x, n_class, dtype=torch.float32): 
    # X shape: (batch), output shape: (batch, n_class)
    x = x.long()
    res = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)
    res.scatter_(1, x.view(-1, 1), 1)
    return res
    
x = torch.tensor([0, 2])
one_hot(x, vocab_size)

我们每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个可以输入进网络的形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步 t t t的输入为 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} XtRn×d,其中 n n n为批量大小, d d d为输入个数,即one-hot向量长度(词典大小)

def to_onehot(X, n_class):  
    # X shape: (batch, seq_len), output: seq_len elements of (batch, n_class)
    return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)

接下来,我们初始化模型参数。隐藏单元个数 num_hiddens是一个超参数。可以看到,参数一共包含三个矩阵,分别对应输入层、输出层和隐藏层,以及其对应的偏置。

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)

    # 隐藏层参数
    W_xh = _one((num_inputs, num_hiddens))
    W_hh = _one((num_hiddens, num_hiddens))
    b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device, requires_grad=True))
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, requires_grad=True))
    return nn.ParameterList([W_xh, W_hh, b_h, W_hq, b_q])

我们根据循环神经网络的计算表达式实现该模型。首先定义init_rnn_state函数来返回初始化的隐藏状态。它返回由一个形状为(批量大小, 隐藏单元个数)的值为0的NDArray组成的元组。使用元组是为了更便于处理隐藏状态含有多个ndarray的情况。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

定义模型:

def rnn(inputs, state, params):
    # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

以下函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数稍显复杂,其中我们将循环神经单元rnn设置成了函数参数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
                num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
    state = init_rnn_state(1, num_hiddens, device)
    output = [char_to_idx[prefix[0]]]
    for t in range(num_chars + len(prefix) - 1):
        # 将上一时间步的输出作为当前时间步的输入
        X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
        # 计算输出和更新隐藏状态
        (Y, state) = rnn(X, state, params)
        # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(int(Y[0].argmax(dim=1).item()))
    return ''.join([idx_to_char[i] for i in output])

我们先测试一下predict_rnn函数。我们将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。

predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,
            device, idx_to_char, char_to_idx)
输出:
'分开西圈绪升王凝瓜必客映'

循环神经网络中较容易出现梯度衰减或梯度爆炸。我们会在6.6节(通过时间反向传播)中解释原因。为了应对梯度爆炸,我们可以裁剪梯度(clip gradient)。假设我们把所有模型参数梯度的元素拼接成一个向量 g \boldsymbol{g} g,并设裁剪的阈值是 θ \theta θ。裁剪后的梯度

min ⁡ ( θ ∣ g ∣ , 1 ) g \min\left(\frac{\theta}{|\boldsymbol{g}|}, 1\right)\boldsymbol{g} min(gθ,1)g

L 2 L_2 L2范数不超过 θ \theta θ

def grad_clipping(params, theta, device):
    norm = torch.tensor([0.0], device=device)
    for param in params:
        norm += (param.grad.data ** 2).sum()
    norm = norm.sqrt().item()
    if norm > theta:
        for param in params:
            param.grad.data *= (theta / norm)

下面定义训练函数:

def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, is_random_iter, num_epochs, num_steps,
                          lr, clipping_theta, batch_size, pred_period,
                          pred_len, prefixes):
    if is_random_iter:
        data_iter_fn = d2l.data_iter_random
    else:
        data_iter_fn = d2l.data_iter_consecutive
    params = get_params()
    loss = nn.CrossEntropyLoss()

    for epoch in range(num_epochs):
        if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态
            state = init_rnn_state(batch_size, num_hiddens, device)
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
        for X, Y in data_iter:
            if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态
                state = init_rnn_state(batch_size, num_hiddens, device)
            else:  
            # 否则需要使用detach函数从计算图分离隐藏状态, 这是为了
            # 使模型参数的梯度计算只依赖一次迭代读取的小批量序列(防止梯度计算开销太大)
                for s in state:
                    s.detach_()
            
            inputs = to_onehot(X, vocab_size)
            # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
            (outputs, state) = rnn(inputs, state, params)
            # 拼接之后形状为(num_steps * batch_size, vocab_size)
            outputs = torch.cat(outputs, dim=0)
            # Y的形状是(batch_size, num_steps),转置后再变成长度为
            # batch * num_steps 的向量,这样跟输出的行一一对应
            y = torch.transpose(Y, 0, 1).contiguous().view(-1)
            # 使用交叉熵损失计算平均分类误差
            l = loss(outputs, y.long())
            
            # 梯度清0
            if params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            grad_clipping(params, clipping_theta, device)  # 裁剪梯度
            d2l.sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
                    num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

现在我们可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, True, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)

输出:

epoch 50, perplexity 70.039647, time 0.11 sec
 - 分开 我不要再想 我不能 想你的让我 我的可 你怎么 一颗四 一颗四 我不要 一颗两 一颗四 一颗四 我
 - 不分开 我不要再 你你的外 在人  别你的让我 狂的可 语人两 我不要 一颗两 一颗四 一颗四 我不要 一
epoch 100, perplexity 9.726828, time 0.12 sec
 - 分开 一直的美栈人 一起看 我不要好生活 你知不觉 我已好好生活 我知道好生活 后知不觉 我跟了这生活 
 - 不分开堡 我不要再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了好生活 我知道好生
epoch 150, perplexity 2.864874, time 0.11 sec
 - 分开 一只会停留 有不它元羞 这蝪什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 除非是乌鸦抢
 - 不分开扫 我不你再想 我不能再想 我不 我不 我不要再想你 不知不觉 你已经离开我 不知不觉 我跟了这节奏
epoch 200, perplexity 1.597790, time 0.11 sec
 - 分开 有杰伦 干 载颗拳满的让空美空主 相爱还有个人 再狠狠忘记 你爱过我的证  有晶莹的手滴 让说些人
 - 不分开扫 我叫你爸 你打我妈 这样对吗干嘛这样 何必让它牵鼻子走 瞎 说底牵打我妈要 难道球耳 快使用双截
epoch 250, perplexity 1.303903, time 0.12 sec
 - 分开 有杰人开留 仙唱它怕羞 蜥蝪横著走 这里什么奇怪的事都有 包括像猫的狗 印地安老斑鸠 平常话不多 
 - 不分开简 我不能再想 我不 我不 我不能 爱情走的太快就像龙卷风 不能承受我已无处可躲 我不要再想 我不能

可以看到,RNN确实能够捕捉、记忆若干个之前字符的信息。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值