1.参考文档 https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
前提,熟悉bp算法推导,熟悉bptt算法推导
2.py源码
#!/usr/bin/env python3
#参考文献 https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
import copy, numpy as np
np.random.seed(0)
# compute sigmoid nonlinearity
def sigmoid(x):
output = 1 / (1 + np.exp(-x))
return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
return output * (1 - output)
# training dataset generation
int2binary = {}#空字典
binary_dim = 8
#=256
largest_number = pow(2, binary_dim)
binary = np.unpackbits(np.array([range(largest_number)], dtype=np.uint8).T, axis = 1)
for i in range(largest_number):
int2binary[i] = binary[i]
# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
# initialize neural network weights
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1 #把值调整到(-1,1)
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
# 随机生成ab两个整数,c=a+b。将abc转成二进制,a和b的二进制是rnn的输入,c的二进制是目标值,训练rnn。
# training logic
for j in range(50000):
# generate a simple addition problem (a + b = c)
a_int = np.random.randint(largest_number / 2) # int version
a = int2binary[a_int] # binary encoding
b_int = np.random.randint(largest_number / 2) # int version
b = int2binary[b_int] # binary encoding
# true answer
c_int = a_int + b_int
c = int2binary[c_int]
# print(a_int, a, b_int, b,c_int,c)
# exit(1)
# where we'll store our best guess (binary encoded)
d = np.zeros_like(c)
overallError = 0
#记录第二层的deta值
layer_2_deltas = list()
#记录第一层的输出值
layer_1_values = list()
layer_1_values.append(np.zeros(hidden_dim))
# moving along the positions in the binary encoding
for position in range(binary_dim):
# generate input and output
# 从abc三个数的二进制的最低位开始,每次取一位,生成训练样本
# print("\nposition=", position)
# print("a=",a)
# print("b=",b)
# print("c=", c)
#比如,取第一位的时候,X=[[1,0]],y=[[1]],是训练样本和目标值
X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])
y = np.array([[c[binary_dim - position - 1]]]).T
# print('X=',X)
# print('y=',y)
# hidden layer (input ~+ prev_hidden)
# 计算第一层的输出值:sigmoid里面有两个部分,分别是input*synapse_0和前次第一层输出值*synapse_h隐层
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))
# output layer (new binary representation)
#第二层输出就很直接了
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# did we miss?... if so, by how much?
# 计算输出误差
layer_2_error = y - layer_2
#根据误差,计算第二层权重系数的deta,这个公式是对第二层微分求导得到的,熟悉BP算法的都清楚,不在叙述
layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
#计算绝对误差之和,以衡量8个位的总误差大小
overallError += np.abs(layer_2_error[0])
# decode estimate so we can print it out
# 记录下 rnn对当前位的预测值
d[binary_dim - position - 1] = np.round(layer_2[0][0])
# store hidden layer so we can use it in the next timestep
# 把本轮第一层的输出记录到layer_1_values,以备bptt使用。
layer_1_values.append(copy.deepcopy(layer_1))
#计算第一个隐层的delta
future_layer_1_delta = np.zeros(hidden_dim)
for position in range(binary_dim):
#注意喽,X这一轮循环是从ab的二进制的高位开始往低位走的
X = np.array([[a[position], b[position]]])
#高位二进制是后计算的,因此其值在layer_1的尾部
layer_1 = layer_1_values[-position - 1]
prev_layer_1 = layer_1_values[-position - 2]
# error at output layer
layer_2_delta = layer_2_deltas[-position - 1]
# error at hidden layer
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(
layer_1)
# let's update all our weights so we can try again
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
synapse_0_update += X.T.dot(layer_1_delta)
future_layer_1_delta = layer_1_delta
synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha
synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0
# print out progress
if (j % 1000 == 0):
print("Error:" + str(overallError))
print("Pred:" + str(d))
print("True:" + str(c))
out = 0
for index, x in enumerate(reversed(d)):
out += x * pow(2, index)
print(str(a_int) + " + " + str(b_int) + " = " + str(out))
print("------------")