人工智能导论实验——汉诺塔&八皇后问题
实验目的及要求:
本项目要求能够理解人工智能的基本原理,理解问题归约法的原理和方法,掌握用问题归约表示问题的步骤,并能够实际问题给出具体的实现。
实验内容:
1.问题归约法的原理和方法
2.与或树表示问题的步骤
3.问题归约法的实现
一、汉诺塔问题
实验项目1:
已知3个柱子1,2,3和3个盘子A,B,C(A比B小,B比C小)。初始状态下,A,B,C依次放到1柱上。目标状态是A,B,C依次放在柱子2上。条件是每次可移动一个盘子,盘子上方是空顶方可移动,而任何时候都不允许大盘放在小盘之上。
实验要求:
1.形式化表示Hanoi问题,画出其规约图(即,与/或图)
2. 根据问题的形式化结果,结合prolog语言的特点,Prolog实现该问题求解;
实验步骤:
题目分析:
实现这个算法可以简单分为三个步骤:
①把n-1个盘子由柱1移到柱3;
②把第n个盘子由柱1移到柱2;
③把n-1个盘子由柱3移到柱2;
例如:
当n == 1时,
1.柱1---->柱2
sum = 1 次
当n == 2时,
2.柱1---->柱3
2. 柱1---->柱2
3. 4. 柱3---->柱2
sum = 3 次
当n == 3时,
4. 柱1---->柱2
5. 柱1---->柱3
6. 柱2---->柱3
7. 柱1---->柱2
8. 柱3---->柱1
9. 柱3---->柱2
10. 柱1---->柱2
sum = 7 次
其状态图如下:
prolog代码如下:
hanoi(N) :- move(N,left,center,right).
move(0,_,_,_) :- !.
move(N,A,B,C) :-
M is N-1,
move(M,A,C,B),
inform(A,B),
move(M,C,B,A).
inform(X,Y) :- write('Move from '), write(X), write(' to '), write(Y), write('.'), nl.
运行结果如下:
二、八皇后问题
实验项目2:
如何能在8*8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇
后?为了到达此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
通过实验,基本掌握逻辑编程的思想,了解逻辑编程与命令式编程的区别。
能够依据给定的事实以及规则编写代码,解决逻辑约束问题(CLP)。
实验要求:
- 画出求解8皇后问题的递归回溯算法和迭代算法流程图。
- 画出状态树(任意解均可)。
- 参考华为《人工智能导论》实验手册,在华为云的ModelArts中用Python实现该问题的求解。
实验步骤:
算法介绍:
回溯算法:回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,