四平方和
题目链接
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:
5=02+02+12+22
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对 4 个数排序:
0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。
输入格式
输入一个正整数 N。
输出格式
输出4个非负整数,按从小到大排序,中间用空格分开。
数据范围
0<N<5∗106
输入样例:
5
输出样例:
0 0 1 2
算法分析
暴力的话就是O(n3)这么多,时间复杂度肯定是超过了,那么我们要优化,我们可以分开来看,因为题目说第一个输出方法所以我们要先处理后面的,这样使字典序最小.我们先将c和d平方加和的结果存储,还需要加一层排序.然后再枚举a,b两个,然后去二分判断是否存在一个和使的加和为n.
代码实现
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long ll;
const int maxn=2500010;
int n,cnt;
struct Sum
{
int s,c,d;
bool operator <(const Sum & b)const
{
if(s!=b.s) return s<b.s;
if(c!=b.c) return c<b.c;
return d<b.d;
}
}sum[maxn];
int main()
{
cin>>n;
for(int c=0;c*c<=n;c++)
{
for(int d=c;c*c+d*d<=n;d++)
{
sum[cnt++]={c*c+d*d,c,d};
}
}
sort(sum,sum+cnt);
for(int a=0;a*a<=n;a++)
{
for(int b=a;a*a+b*b<=n;b++)
{
int t=n-a*a-b*b;
int l=0,r=cnt;
while(l<r)
{
int mid=l+r>>1;
if(sum[mid].s>=t) r=mid;
else l=mid+1;
}
if(sum[l].s==t)//如果能找到就是第一种.因为a,b都从小到大开始枚举,能得到的一定是字典序最小的
{
cout<<a<<' '<<b<<' '<<sum[l].c<<' '<<sum[l].d<<endl;
return 0;
}
}
}
return 0;
}