四平方和(二分,模拟)

31 篇文章 1 订阅
28 篇文章 0 订阅

四平方和

题目链接
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多 4 个正整数的平方和。
如果把 0 包括进去,就正好可以表示为 4 个数的平方和。
比如:

5=02+02+12+22
7=12+12+12+22
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对 4 个数排序:
0≤a≤b≤c≤d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。

输入格式

输入一个正整数 N。

输出格式

输出4个非负整数,按从小到大排序,中间用空格分开。

数据范围

0<N<5∗106

输入样例:

5

输出样例:

0 0 1 2

算法分析

暴力的话就是O(n3)这么多,时间复杂度肯定是超过了,那么我们要优化,我们可以分开来看,因为题目说第一个输出方法所以我们要先处理后面的,这样使字典序最小.我们先将c和d平方加和的结果存储,还需要加一层排序.然后再枚举a,b两个,然后去二分判断是否存在一个和使的加和为n.

代码实现

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long ll;
const int maxn=2500010;
int n,cnt;
struct Sum
{
    int s,c,d;
    bool operator <(const Sum & b)const
    {
        if(s!=b.s)  return s<b.s;
        if(c!=b.c)  return c<b.c;
        return d<b.d;
    }
}sum[maxn];
int main()
{
    cin>>n;
    for(int c=0;c*c<=n;c++)
    {
        for(int d=c;c*c+d*d<=n;d++)
        {
            sum[cnt++]={c*c+d*d,c,d};
        }
    }
    sort(sum,sum+cnt);
    for(int a=0;a*a<=n;a++)
    {
        for(int b=a;a*a+b*b<=n;b++)
        {
            int t=n-a*a-b*b;
            int l=0,r=cnt;
            while(l<r)
            {
                int mid=l+r>>1;
                if(sum[mid].s>=t) r=mid;
                else    l=mid+1;
            }
            if(sum[l].s==t)//如果能找到就是第一种.因为a,b都从小到大开始枚举,能得到的一定是字典序最小的
            {
                cout<<a<<' '<<b<<' '<<sum[l].c<<' '<<sum[l].d<<endl;
                return 0;
            }
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值