括号配对
题目链接
Hecy 又接了个新任务:BE 处理。
BE 中有一类被称为 GBE。
以下是 GBE 的定义:
空表达式是 GBE
如果表达式 A 是 GBE,则 [A] 与 (A) 都是 GBE
如果 A 与 B 都是 GBE,那么 AB 是 GBE
下面给出一个 BE,求至少添加多少字符能使这个 BE 成为 GBE。
注意:BE 是一个仅由(、)、[、]四种字符中的若干种构成的字符串。
输入格式
输入仅一行,为字符串 BE。
输出格式
输出仅一个整数,表示增加的最少字符数。
数据范围
对于所有输入字符串,其长度小于100。
输入样例:
[])
输出样例:
1
算法分析
采用区间dp的方法来进行操作
dp[i][j]表示从i到j最少需要加多少字符才可以满足条件
括号匹配是需要从外两端到里面的一个过程
所以我们状态表示的话就是
如果两端比配成功就只需要判断内部了,然后判断上一层,就是找中间结点判断加和问题
不相等的时候我们就需要继承这中间的最小状态,所以找中间结点来判断左右两边加和的配合
不正确的数量.
所以递归方程为:
不过能否匹配都是需要判断选取中间结点的时候更新问题
if(match(s[i],s[j]))
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
for(int k=l;k<=r;k++)
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]);
然后是边界问题:长度为1的时候就是不匹配数量为1,为了让之后能更新最小值,所以初值要设很大
但是这个是遍历的时候赋值无穷大,没有遍历到的还是0,因为我们要在成功匹配的时候标为0.
其实在遍历的时候dp[i][j],dp[i+1][j-1]其中的左边的dp[i][j]是一定比dp[i+1][j-1]先遍历,所以说这个时候dp[i+1][j-1]是0,dp[i][j]也会更新小的值.
其实还可以再多一次判断,判断i j不匹配的时候去更新判断i+1 j 和i j-1这个集合最小值,就是不匹配
我们可以只选一个端点然后去判断.
代码实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=105;
const int INF=0x3f3f3f3f;
int dp[maxn][maxn];
string s;
bool match(int a,int b)
{
if(s[a]=='['&&s[b]==']'||s[a]=='('&&s[b]==')') return true;
return false;
}
int main()
{
cin>>s;
int n;
n=s.size();
for(int len=1;len<=n;len++)
{
for(int l=0;l+len-1<n;l++)
{
int r=l+len-1;
if(len==1)
dp[l][r]=1;
else
{
dp[l][r]=INF;
if(match(l,r))
dp[l][r]=min(dp[l][r],dp[l+1][r-1]);
for(int k=l;k<=r;k++)
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]);
}
}
}
cout<<dp[0][n-1]<<endl;
return 0;
}