括号配对(区间dp)

括号配对

题目链接
Hecy 又接了个新任务:BE 处理。
BE 中有一类被称为 GBE。
以下是 GBE 的定义:
空表达式是 GBE
如果表达式 A 是 GBE,则 [A] 与 (A) 都是 GBE
如果 A 与 B 都是 GBE,那么 AB 是 GBE
下面给出一个 BE,求至少添加多少字符能使这个 BE 成为 GBE。
注意:BE 是一个仅由(、)、[、]四种字符中的若干种构成的字符串。

输入格式

输入仅一行,为字符串 BE。

输出格式

输出仅一个整数,表示增加的最少字符数。

数据范围

对于所有输入字符串,其长度小于100。

输入样例:

[])

输出样例:

1

算法分析

采用区间dp的方法来进行操作
dp[i][j]表示从i到j最少需要加多少字符才可以满足条件
括号匹配是需要从外两端到里面的一个过程
所以我们状态表示的话就是
如果两端比配成功就只需要判断内部了,然后判断上一层,就是找中间结点判断加和问题
不相等的时候我们就需要继承这中间的最小状态,所以找中间结点来判断左右两边加和的配合
不正确的数量.
所以递归方程为:
不过能否匹配都是需要判断选取中间结点的时候更新问题

	if(match(s[i],s[j]))
		dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
	for(int k=l;k<=r;k++)
        dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]);

然后是边界问题:长度为1的时候就是不匹配数量为1,为了让之后能更新最小值,所以初值要设很大
但是这个是遍历的时候赋值无穷大,没有遍历到的还是0,因为我们要在成功匹配的时候标为0.
其实在遍历的时候dp[i][j],dp[i+1][j-1]其中的左边的dp[i][j]是一定比dp[i+1][j-1]先遍历,所以说这个时候dp[i+1][j-1]是0,dp[i][j]也会更新小的值.
其实还可以再多一次判断,判断i j不匹配的时候去更新判断i+1 j 和i j-1这个集合最小值,就是不匹配
我们可以只选一个端点然后去判断.

代码实现

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=105;
const int INF=0x3f3f3f3f;
int dp[maxn][maxn];
string s;
bool match(int a,int b)
{
    if(s[a]=='['&&s[b]==']'||s[a]=='('&&s[b]==')')  return true;
    return false;
}
int main()
{
    cin>>s;
    int n;
    n=s.size();
    for(int len=1;len<=n;len++)
    {
        for(int l=0;l+len-1<n;l++)
        {
            int r=l+len-1;
            if(len==1) 
                dp[l][r]=1;
            else
            {
                dp[l][r]=INF;
                if(match(l,r))
                    dp[l][r]=min(dp[l][r],dp[l+1][r-1]);
                for(int k=l;k<=r;k++)
                    dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]);
            }
        }
    }
    cout<<dp[0][n-1]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值