凸优化笔记5(牛顿法)

前言

下面将介绍牛顿法,我将从基本思想、牛顿方向、基本不步骤展开讨论,通过例题演示其操作步骤。


一、牛顿法思想

最速梯度下降法可以看到只用到了目标函数的一阶导数信息(迭代方向),而牛顿法则用到了二阶导数信息,下面讲解如何用到了二阶导数信息。

在这里插入图片描述


二、牛顿方向与牛顿法

在这里插入图片描述


三、基本步骤

在这里插入图片描述


四、示例

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笔下万码生谋略

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值