基于多种机器学习算法的短信垃圾分类模型

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

导入第三方库

import warnings  # 导入警告库
warnings.filterwarnings("ignore")  # 忽略所有警告信息

import string  # 导入字符串处理模块
import numpy as np  # 导入NumPy库,用于数组和矩阵运算
import pandas as pd  # 导入Pandas库,用于数据分析
import re  # 导入正则表达式模块
import matplotlib.pyplot as plt  # 导入matplotlib库,用于数据可视化
import seaborn as sns  # 导入Seaborn库,用于数据可视化
from nltk.corpus import stopwords  # 从NLTK库导入停用词
from plotly import graph_objs as go  # 导入Plotly库的图形对象
from plotly import express as px  # 导入Plotly Express模块,用于简化数据可视化
from plotly import figure_factory as ff  # 导入Plotly的图形工厂模块
from collections import Counter  # 导入Counter模块,用于计数
from PIL import Image  # 导入Python Imaging Library,用于处理图像
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator  # 导入词云生成模块
# ! pip install bs4  # 安装BeautifulSoup4库
from bs4 import BeautifulSoup  # 导入BeautifulSoup库,用于解析HTML和XML

from sklearn.model_selection import train_test_split  # 导入数据划分模块
from sklearn.preprocessing import LabelEncoder  # 导入标签编码器
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score  # 导入评估指标模块
from sklearn.linear_model import LogisticRegression  # 导入逻辑回归模型
from sklearn import svm  # 导入支持向量机模块
from sklearn.ensemble import RandomForestClassifier  # 导入随机森林分类器
from sklearn.ensemble import GradientBoostingClassifier  # 导入梯度提升分类器
from sklearn.neighbors import KNeighborsClassifier  # 导入K近邻分类器
from sklearn.feature_extraction.text import CountVectorizer  # 导入计数向量化模块
from sklearn import metrics  # 导入评估指标模块
from sklearn.naive_bayes import MultinomialNB  # 导入多项式朴素贝叶斯分类器
from sklearn.feature_extraction.text import CountVectorizer  # 导入计数向量化模块(重复)

from string import punctuation  # 导入标点符号
from nltk.tokenize.toktok import ToktokTokenizer  # 导入Toktok分词器
from nltk import pos_tag  # 导入词性标注模块
from nltk.corpus import wordnet  # 导入词汇数据库
from nltk.stem.porter import PorterStemmer  # 导入Porter词干提取器
from nltk.corpus import stopwords  # 从NLTK库导入停用词(重复)

primary_blue = "#496595"  # 定义主要的蓝色十六进制代码
primary_blue2 = "#85a1c1"  # 定义第二种主要的蓝色十六进制代码
primary_blue3 = "#3f4d63"  # 定义第三种主要的蓝色十六进制代码
primary_grey = "#c6ccd8"   # 定义主要的灰色十六进制代码

读取数据

在这里插入图片描述

数据预处理

在这里插入图片描述

数据分析与可视化

在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

机器学习建模

贝叶斯

在这里插入图片描述在这里插入图片描述

逻辑回归

在这里插入图片描述在这里插入图片描述

支持向量机

在这里插入图片描述在这里插入图片描述

随机森林

在这里插入图片描述
在这里插入图片描述

XGBoost

在这里插入图片描述在这里插入图片描述

总结

本项目是一个基于多种机器学习的自然语言处理项目,通过对邮件的文本进行预处理,然后分词,转换为词向量,在进行多维度的EDA分析,最终采用多种机器学习的模型算法对其进行建模,评估。通过分类报告,ROC曲线,AUC面积,混淆矩阵,以及在线验证程序进行展示,来凸显出大数据和人工智能算法结合的语言判别模型的优势

每文一语

业精于勤荒于嬉

### 使用YOLO实现视觉垃圾分类的方法 #### 数据准备 为了使YOLO模型能够有效地区分不同类型的垃圾,需要构建一个高质量的数据集。通常采用Pascal VOC格式来整理数据集[^1]。该数据集中应包含多种类别的垃圾样本,如可降解物、纸板、玻璃、金属、纸质品和塑料等,并标注每张图片中的物体位置及其所属类别。 #### 开发环境配置 在开始编写代码之前,需先设置好开发环境。这包括安装必要的库文件和支持工具,比如Python解释器、PyTorch框架以及其他依赖项。对于YOLOv5而言,官方推荐使用Anaconda作为包管理平台来进行快速部署[^2]。 #### 训练过程概述 一旦完成了上述准备工作,则可以着手于训练自己的YOLO模型了。具体来说就是调整预训练权重参数并利用自定义的数据集对其进行微调(fine-tuning),从而让其适应特定应用场景下的需求——即识别各类废弃物。此过程中涉及到超参的选择与优化工作,例如学习率设定、迭代次数控制等方面的内容。 #### 测试与评估 完成训练之后,应当对所得到的结果进行全面测试以验证性能表现。可以通过计算mAP(mean Average Precision)指标衡量检测效果的好坏;同时也可以借助混淆矩阵(confusion matrix)直观展示各分类之间的关系情况。此外,在实际应用环境中还需考虑实时性因素的影响,确保整个系统的响应速度满足预期标准。 #### 用户界面设计 为了让非技术人员也能方便地操作这套系统,建议配套开发图形化的用户交互界面(UI)。这里提到的文章中提到了使用PyQt创建了一个简洁易懂的操作面板,允许使用者轻松加载待测图像或视频流,并查看最终的预测结果。 ```python import torch from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from utils.datasets import letterbox import cv2 def detect(image_path): model = attempt_load('yolov5s.pt', map_location=torch.device('cpu')) # 加载模型 img0 = cv2.imread(image_path) # 图片预处理 img = letterbox(img0, new_shape=640)[0] img = img[:, :, ::-1].transpose(2, 0, 1).copy() img = torch.from_numpy(img).float().unsqueeze(0)/255.0 pred = model(img)[0] det = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45) if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round() return det ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值