一文读懂曲线调色原理


图一

1. 光学三原色

红、绿、蓝三个颜色组成光学三原色,当他们三个颜色等量混合的时候就会变成白色,而白色代表亮,所以也称为加色模式。

2. 印刷三原色

青、品、黄三个颜色组成印刷三原色,与光学三原色正好相反,当他们三个颜色等量混合的时候变成黑色,而黑色代表暗,所以也称为减色模式

3. 互补关系

光学三原色(RGB)和印刷三原色(CMYK)又是互补关系,所以从上述图中的互补关系可以看出以下对应关系:

  • 红色 - 青色 所以红色增加青色减少,青色增加红色减少
  • 绿色 - 品色 所以绿色增加品色减少,品色增加绿色减少
  • 蓝色 - 黄色 所以蓝色增加黄色减少,黄色增加蓝色减少
4. 颜色混合结果

从上图还可以看出光学三元色任意两个原色组合,都可以得到以下结果:

  • 蓝 + 绿 = 青色(红色的互补色)
  • 红 + 蓝 = 品色(绿色的互补色)
  • 红 + 绿 = 黄色(蓝色的互补色)
5. 如何应用

如果了解以上几点,那么就可以使用曲线去调节暗部、中间掉、高光区域的色调,具体有以下事例:

  • Q:如果想要为画面增加青色,使用曲线该怎么做,是直接降低R曲线还是有别的方法呢?
  • A:如果直接调整R曲线,增加青色,那么画面就在增加青色的同时也会变暗,因为青色属于印刷三原色,更重要的也是减色模式,增加青色的同时,其实也在减少红色,所以会变暗;最好的办法是使用光学三原色混合为画面增加青色,因为光学三原色是加色模式,在增加光学三原色的时候也会提亮画面。因此,我们知道蓝色 + 绿色为青色,所以为需要调整的地方分别增加蓝色和绿色,就会为画面注入青色,同时也会体提亮画面。

相同的道理,如果想要减少画面中的蓝色,那么可以增加黄色,而增加黄色有两种方式,就是直接加黄,直接加黄就会导致湖面变暗,和上边相同的道理,所以采用原色混合得到黄色,然后增加混合为黄色的原色,就会减少蓝色同时还会提亮画面。

6. 总结

核心是要掌握原色混合会得到什么颜色,加色模式和减色模式的区别,以及对应的互补色是什么,掌握这些,灵活运用,多尝试,就会掌握曲线调色。

Transformer模型是一种基于自注意力机制(Self-Attention)的深度学习架构,最初由Google的团队在2017年提出的论文《Attention Is All You Need》中详细介绍[^4]。它的核心思想是让模型能够并行地处理序列中的每个位置,而不是像RNN那样顺序依赖。 **原理概述**[^4]: 1. **自注意力机制**: Transformer通过计算查询(query)、键(key)和值(value)之间的相似度来建立元素间的直接联系。这个过程不依赖于先前的状态,而是考虑整个输入序列。 2. **多头注意力(Multi-head Attention)**: 分成多个子层执行注意力操作,每个子层有自己独立的权重参数,可以捕获不同抽象层次的关系。 3. **位置编码(Positional Encoding)**: 对于缺少循环结构的Transformer来说,引入了位置信息到输入,以捕捉词语之间的相对顺序。 4. **残差连接和层归一化**: 残差网络允许信息在网络的不同层之间自由流动,而层归一化则有助于加速训练。 5. **自回归性与掩码(Masking)**: 对于生成任务,为了保持预测的顺序性,模型会限制前向传播时对未来的访问。 要深入理解Transformer的工作原理,你可以从以下几个方面入手: - **Transformer架构示意图**: 查看其标准的encoder-decoder结构[^4]。 - **注意力机制的数学公式**: 学习softmax加权求和的实现细节[^5]。 - **实际代码实现**: 参考开源库如Hugging Face Transformers[^6]中的代码,通过实践构建一个简单的Transformer模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值