正态分布(Normal Distribution)

本文介绍了正态分布的概念,包括其定义、期望值μ和标准差σ的作用。通过一个实际例子展示了如何对一组数据进行标准化处理,将通勤时间从原始分布转换为标准正态分布,并计算了在30到45分钟之间的概率。标准化是统计分析中常用的数据预处理方法,便于比较不同分布的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正态分布定义

正态分布(Normal Distribution),又名高斯分布(Gaussian Distribution)。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度当μ = 0,σ = 1时的正态分布是标准正态分布

标准差:
在这里插入图片描述
若随机变量 X 服从一个位置参数为 μ、尺度参数为 σ 的概率分布,且其概率密度函数为
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

标准化

小明每天上学的通勤时间是一个随机变量X,这个变量服从正态分布。统计他过去20天的通勤时间(单位:分钟):26、33、65、28、34、55、25、44、50、36、26、37、43、62、35、38、45、32、28、34。现在我们想知道他上学花30~45分钟的概率。

求解期望μ以及方差σ

import numpy as np
datas = np.array([26, 33, 65, 28, 34, 55, 25, 44, 50, 36, 26, 37, 43, 62, 35, 38, 45, 32, 28, 34])
print(datas.mean(), datas.std())
38.8 11.399999999999999

求P(30 < X < 45),就转换成了求P(-0.77 < Z < 0.54),标准化的具体计算为:

  1. 30 →(30-38.8)/ 11.4 = - 0.77
  2. 45 →(45-38.8)/ 11.4 = 0.54
  3. X → Z
  4. P(30 ≤ X ≤ 45)= P(-0.77 ≤ Z ≤ 0.54)
  5. P (-0.77 ≤ Z ≤0.54) = P (Z ≤ 0.54) – P (Z ≤ -0.77)

标准正态分布

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数产第一混子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值