2021SC@SDUSC
Fetcher这个模块在Nutch中有单独一个包在实现,在org.apache.nutch.fetcher,其中有Fetcher.java, FetcherOutput 和FetcherOutputFormat来组成,看上去很简单,但其中使用到了多线程,多线程的生产者与消费者模型,MapReduce的多路径输出等方法。
下面我们来看一下Fetcher的注释,从中我们可以得到很多有用的信息。
首先,这是一种基于队列的fetcher方法,它使用了一种经典的线程模型,生产者(a-QueueFeeder)与消费者(many-FetcherThread)模型,注意,这里有多个消费者。生产者从Generate产生的fetchlists中分类得到一批FetchItemQueue,每一个FetchItmeQueue都是由一类相同host的FetchItem组成,这些FetchItem是用来描述被抓取的对象。当一个FetchItem从FetchItemQueue中取出后,QueueFeeder这个生产者会不断的向队列中加入新的FetchItem,直到这个队列满了为止或者已经没有fetchlist可读取,当队列中的所有FetchItem都被抓取完成后,所有抓取线程都会退出运行。每一个FetchItemQueue都有一套自己的抓取策略,如最大的并行抓取个数,两次抓取的间隔等,如果当FetcherThread向队列申请一个FetchItem时,FetchItemQueue发现当前的FetchItem没有满足抓取策略,那这里它就会返回null,表达当前FetchItem还没有准备好被抓取。如果这些所有FetchItem都没有准备好被抓取,那这时FetchThread就会进入等待状态,直到条件满足被促发或者是等待超时,它会认为任务已经被挂起,这时FetchThread会自动退出。
下面是代码分析
for (i = 0; i < depth; i++) { // generate new segment
Path[] segs = generator.generate(crawlDb, segments, -1, topN, System
.currentTimeMillis());
if (segs == null) {
LOG.info("Stopping at depth=" + i + " - no more URLs to fetch.");
break;
}
//通过之前生成的segments抓取
fetcher.fetch(segs[0], threads); // fetch it
if (!Fetcher.isParsing(job)) {
parseSegment.parse(segs[0]); // parse it, if needed
}
crawlDbTool.update(crawlDb, segs, true, true); // update crawldb
}
..................
..................
..................
//threads默认通过fetcher.threads.fetch设置,也可通过参数传递
public void fetch(Path segment, int threads)
throws IOException {
//设置agentName
//在http.agent.name中设置,会检查在http.robots.agents中是否存在
checkConfiguration();
//记录开始时间,以及segment路径
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
long start = System.currentTimeMillis();
if (LOG.isInfoEnabled()) {
LOG.info("Fetcher: starting at " + sdf.format(start));
LOG.info("Fetcher: segment: " + segment);
}
// set the actual time for the timelimit relative
// to the beginning of the whole job and not of a specific task
// otherwise it keeps trying again if a task fails
long timelimit = getConf().getLong("fetcher.timelimit.mins", -1);
if (timelimit != -1) {
timelimit = System.currentTimeMillis() + (timelimit * 60 * 1000);
LOG.info("Fetcher Timelimit set for : " + timelimit);
getConf().setLong("fetcher.timelimit", timelimit);
}
// Set the time limit after which the throughput threshold feature is enabled
timelimit = getConf().getLong("fetcher.throughput.threshold.check.after", 10);
timelimit = System.currentTimeMillis() + (timelimit * 60 * 1000);
getConf().setLong("fetcher.throughput.threshold.check.after", timelimit);
int maxOutlinkDepth = getConf().getInt("fetcher.follow.outlinks.depth", -1);
if (maxOutlinkDepth > 0) {
LOG.info("Fetcher: following outlinks up to depth: " + Integer.toString(maxOutlinkDepth));
int maxOutlinkDepthNumLinks = getConf().getInt("fetcher.follow.outlinks.num.links", 4);
int outlinksDepthDivisor = getConf().getInt("fetcher.follow.outlinks.depth.divisor", 2);
int totalOutlinksToFollow = 0;
for (int i = 0; i < maxOutlinkDepth; i++) {
totalOutlinksToFollow += (int)Math.floor(outlinksDepthDivisor / (i + 1) * maxOutlinkDepthNumLinks);
}
LOG.info("Fetcher: maximum outlinks to follow: " + Integer.toString(totalOutlinksToFollow));
}
JobConf job = new NutchJob(getConf());
job.setJobName("fetch " + segment);
//配置线程数
job.setInt("fetcher.threads.fetch", threads);
job.set(Nutch.SEGMENT_NAME_KEY, segment.getName());
// for politeness, don't permit parallel execution of a single task
job.setSpeculativeExecution(false);
//配置输入
FileInputFormat.addInputPath(job, new Path(segment, CrawlDatum.GENERATE_DIR_NAME));
job.setInputFormat(InputFormat.class);
//配置MapRunner
job.setMapRunnerClass(Fetcher.class);
//配置输出
FileOutputFormat.setOutputPath(job, segment);
job.setOutputFormat(FetcherOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NutchWritable.class);
JobClient.runJob(job);
long end = System.currentTimeMillis();
LOG.info("Fetcher: finished at " + sdf.format(end) + ", elapsed: " + TimingUtil.elapsedTime(start, end));
}
public RecordWriter<Text, NutchWritable> getRecordWriter(final FileSystem fs,
final JobConf job,
final String name,
final Progressable progress) throws IOException {
//定义输出目录
Path out = FileOutputFormat.getOutputPath(job);
//定义抓取的输出目录
final Path fetch =
new Path(new Path(out, CrawlDatum.FETCH_DIR_NAME), name);
//定义抓取内容的输出目录
final Path content =
new Path(new Path(out, Content.DIR_NAME), name);
//定义压缩类型
final CompressionType compType = SequenceFileOutputFormat.getOutputCompressionType(job);
//定义输出对象
final MapFile.Writer fetchOut =
new MapFile.Writer(job, fs, fetch.toString(), Text.class, CrawlDatum.class,
compType, progress);
return new RecordWriter<Text, NutchWritable>() {
private MapFile.Writer contentOut;
private RecordWriter<Text, Parse> parseOut;
{
//如果配置"fetcher.store.content"为true,则生成content
if (Fetcher.isStoringContent(job)) {
contentOut = new MapFile.Writer(job, fs, content.toString(),
Text.class, Content.class,
compType, progress);
}
//如果配置"fetcher.parse"为true,而抽取出外连接
if (Fetcher.isParsing(job)) {
parseOut = new ParseOutputFormat().getRecordWriter(fs, job, name, progress);
}
}
public void write(Text key, NutchWritable value)
throws IOException {
Writable w = value.get();
// 对对象类型进行判断,调用相应的抽象输出,写到不同的文件中去
if (w instanceof CrawlDatum)
fetchOut.append(key, w);
else if (w instanceof Content)
contentOut.append(key, w);
else if (w instanceof Parse)
parseOut.write(key, (Parse)w);
}
public void close(Reporter reporter) throws IOException {
fetchOut.close();
if (contentOut != null) {
contentOut.close();
}
if (parseOut != null) {
parseOut.close(reporter);
}
}
};
}
从代码可以看出‘,fetch主要实现了
’1,从segment中读取<url, CrawlDatum>,将它放入相应的队列中,队列以queueId为分类,而queueId是由 协议://ip 组成,在放入队列过程中,
如果不存在队列则创建(比如javaeye的所有地址都属于这个队列:http://221.130.184.141) --> queues.addFetchItem(url, datum);
2,检查机器人协议是否允许该url被爬行(robots.txt) --> protocol.getRobotRules(fit.url, fit.datum);
3,检查url是否在有效的更新时间里 --> if (rules.getCrawlDelay() > 0)
4,针对不同协议采用不同的协议采用不同机器人,可以是http、ftp、file,这地方已经将内容保存下来(Content)。 --> protocol.getProtocolOutput(fit.url, fit.datum);
5,成功取回Content后,在次对HTTP状态进行识别(如200、404)。--> case ProtocolStatus.SUCCESS:
6,内容成功保存,进入ProtocolStatus.SUCCESS区域,在这区域里,系统对输出内容进行构造。 --> output(fit.url, fit.datum, content, status, CrawlDatum.STATUS_FETCH_SUCCESS);
7,在内容构造过程中,调取内容解析器插件(parseUtil),如mp3\html\pdf\word\zip\jsp\swf……。 --> this.parseUtil.parse(content); --> parsers[i].getParse(content);
8,我们现在研究html解析,所以只简略说明HtmlParser,HtmlParser中,会解析出text,title, outlinks, metadata。
text:过滤所有HTML元素;title:网页标题;outlinks:url下的所有链接;metadata:这东西分别做那么几件事情 首先检测url头部的meta name="robots" 看看是否允许蜘蛛爬行,
其次通过对meta http-equiv refresh等属性进行识别记录,看页面是否需要转向。