一、前言
“1+1=2” 对我们而言是再熟悉不过的算术事实。但它究竟是在哪一本书里最先以文字或符号的形式出现?这是一个看似简单、实则不容易回答的问题。原因在于,“1+1=2” 是人类在很早时期就朴素掌握的“加法”概念,其历史几乎与人类文明的发展同步。
二、数学的早期发展
-
原始计数与结绳记事
在人类文字出现之前,人们通过刻痕、结绳、石子等方式进行计数。由于生产生活的需要,人们自然而然地意识到“一件物品加上一件物品就得到两件”的直观道理。可以说,在文字尚未出现之前,就已经存在 “1+1=2” 的朴素认识。 -
古代文献多以实例或表格形式呈现
公元前两千年左右,古巴比伦人使用泥板刻写数学习题或表格;古埃及的《莱因德纸草书》(Rhind Mathematical Papyrus,约公元前1650年)则包含了大量算术、几何问题。这些早期文献虽然不一定直接写出现代符号形式的“1+1=2”,但他们的加法范例事实上已经包含了这个基本真理。
三、为何难以准确追溯 “1+1=2” 的最早记载
-
文献不系统,常以算例示人
早期的数学文献更注重解决具体问题,记录方式也以表格或实例为主,而非像现代课本那样直接列出公式“1+1=2”。 -
基础常识往往不言而喻
“1+1=2” 在古人看来几乎不需要专门论证,它是生活中最基本的计数事实。因此往往不会在文献中着重强调或明确陈述。 -
现代形式化证明兴起较晚
直到 20 世纪,怀特海 (Whitehead) 与罗素 (Russell) 在《数学原理(Principia Mathematica)》中,才以严格公理化的方式正式推导出了 “1+1=2”。但这当然不是 “1+1=2” 的首次出现,只是首次在一个极其严谨的逻辑体系里给出正式证明。
四、可能的最早文字记录
-
古巴比伦泥板
这些泥板大约可追溯至公元前 2000~1800 年,内容涵盖了当时的算术题、乘法表和加法表等。虽然形式古老,却实质上已经使用了诸如“把 1 加到 1 上”之类的加法活动。 -
古埃及《莱因德纸草书》
这份纸草书约写于公元前 1650 年,包含大量数学练习题、几何与代数问题等。其中也包括加法、乘法等基础运算思路。虽然我们无法直接看到与现代符号一致的“1+1=2”,但类似的算术推理绝对存在。
五、总结
“1+1=2” 之所以没有一个公认最早的文字或书面记录,主要因为:
-
这个概念比文字更为古老,早期的记载方式也与现代符号不同;
-
它被古人视为不言自明的事实,无需刻意声明;
-
真正以公理化或严格逻辑方式呈现 “1+1=2” 则要到 20 世纪才出现。
因此,“1+1=2” 并不来自某本特定著作或某位特定人物的“发明”,它是人类在对世界进行最朴素的观察与实践中自然形成的一个基础真理。若一定要追溯最早的“文献记录”,则最有可能在古巴比伦泥板或古埃及的纸草书中以某种远古形式出现,但与我们今天使用的现代符号相去甚远。
参考资料:
-
《莱因德纸草书》(Rhind Mathematical Papyrus)
-
古巴比伦泥板文献
-
A. N. Whitehead & B. Russell, Principia Mathematica