DiffPIR:基于扩散模型的即插即用图像复原技术

DiffPIR:基于扩散模型的即插即用图像复原技术

DiffPIR"Denoising Diffusion Models for Plug-and-Play Image Restoration", Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool.项目地址:https://gitcode.com/gh_mirrors/di/DiffPIR

项目介绍

DiffPIR 是一个基于扩散模型的即插即用图像复原(Plug-and-Play Image Restoration, PIR)开源项目。该项目由Yuanzhi Zhu、Kai Zhang等研究人员开发,并在CVPR 2023 NTIRE研讨会上展示。DiffPIR通过将传统的即插即用方法集成到扩散采样框架中,实现了在超分辨率、图像去模糊和图像修复等任务中的卓越性能。

项目技术分析

DiffPIR的核心技术在于利用扩散模型作为生成性去噪器,替代传统的判别性高斯去噪器。扩散模型在高质量图像合成方面表现出色,但其在即插即用图像复原中的潜力尚未得到充分挖掘。DiffPIR通过创新的优化算法,将扩散模型的生成能力与即插即用方法相结合,显著提升了图像复原的效果。

项目及技术应用场景

DiffPIR适用于多种图像复原任务,包括但不限于:

  • 超分辨率(Super-Resolution, SR):将低分辨率图像提升至高分辨率。
  • 图像去模糊(Deblurring):去除图像中的模糊效果,恢复清晰图像。
  • 图像修复(Inpainting):填补图像中的缺失部分,恢复完整图像。

这些应用场景广泛存在于摄影、医学影像、监控视频等领域,DiffPIR的高效性和高质量输出使其在这些领域具有巨大的应用潜力。

项目特点

  1. 生成性去噪器:利用扩散模型作为生成性去噪器,相比传统的高斯去噪器,能够更好地保留图像的细节和纹理。
  2. 高效性:在不超过100次神经函数评估(NFEs)的情况下,实现最先进的性能,显著降低了计算成本。
  3. 灵活性:支持多种图像复原任务,用户可以根据需求选择不同的配置文件进行操作。
  4. 易用性:项目提供了详细的安装和使用指南,用户可以轻松上手,快速实现图像复原。

结语

DiffPIR通过创新的扩散模型与即插即用方法的结合,为图像复原领域带来了新的突破。无论是在学术研究还是实际应用中,DiffPIR都展现出了巨大的潜力。如果你正在寻找一种高效、高质量的图像复原解决方案,DiffPIR无疑是一个值得尝试的选择。

项目地址DiffPIR GitHub

论文链接DiffPIR Paper

项目页面DiffPIR Project Page

DiffPIR"Denoising Diffusion Models for Plug-and-Play Image Restoration", Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, Luc Van Gool.项目地址:https://gitcode.com/gh_mirrors/di/DiffPIR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祖筱泳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值