【HuggingFace Transformers】BertSelfAttention源码解析

1. BertSelfAttention类 介绍

BertSelfAttention 类是 BERT 模型的核心组件之一,主要负责实现多头自注意力机制。通过注意力机制,模型可以捕捉到输入序列中各个位置之间的依赖关系。以下是对 BertSelfAttention 类的详细介绍:

1.1 关键组件

  • num_attention_heads:注意力头的数量。多头注意力机制通过使用多个注意力头来增强模型的表达能力,每个头在不同的子空间中学习注意力模式。

  • attention_head_size:每个注意力头的维度。它等于 hidden_size 除以 num_attention_heads

  • all_head_size:所有注意力头的总维度。它等于 attention_head_size 乘以 num_attention_heads,通常与 hidden_size 相等。

  • query, key, value:线性变换层,用于将输入序列映射到查询(Q)、键(K)和值(V)表示。这些是计算注意力权重的基础。

  • dropout:用于防止过拟合的 Dropout 层,应用在计算出的注意力权重上。

  • position_embedding_type:位置嵌入的类型,BERT 主要使用绝对位置嵌入,但该类也支持相对位置嵌入(如 relative_keyrelative_key_query)。

  • distance_embedding:在使用相对位置嵌入时,模型学习的相对位置距离嵌入。

  • is_decoder:指示是否为解码器模型的一部分。这在解码器-编码器架构(如 Transformer)中非常重要。

1.2 主要方法

  • __init__初始化方法,配置并创建注意力层的各个组件。它会检查输入的 hidden_size 是否能被 num_attention_heads 整除,以确保每个注意力头处理的维度是均匀的。

  • transpose_for_scores:将输入张量的形状从 [batch_size, seq_length, hidden_size] 转换为 [batch_size, num_attention_heads, seq_length, attention_head_size],以便进行多头并行计算。

  • forward前向传播方法,执行自注意力计算,计算过程参考公式。具体步骤包括:
    (1) 输入的 hidden_states 通过 query, key, value 层进行线性变换,生成 Q, K, V
    (2) 计算 QK 的点积来生成注意力分数
    (3) 对分数进行缩放,并应用 softmax 生成注意力权重
    (4) 将注意力权重V 相乘生成上下文向量
    (5) 如果需要,返回注意力权重上下文向量

2. BertSelfAttention类 源码解析(核心简版)

这里我们设定配置为:

position_embedding_type="absolute"
is_decoder = False
encoder_hidden_states = None
past_key_value = None

即核心简化版的BertSelfAttention类为:

# -*- coding: utf-8 -*-
# @time: 2024/8/23 18:46

import torch
import math

from torch import nn
from typing import Optional, Tuple


class BertSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        """hidden size需要能被attention头的数量整除,以确保每个头能处理hidden size的相等部分。
        例如,如果hidden_size是768,num_attention_heads是12,那么768 % 12等于0,这意味着配置是有效的。"""

        # ----------------------------------------------检查配置--------------------------------------------------------
        # 如果 hidden_size 不能被 num_attention_heads 整除,并且 config 对象没有 embedding_size 属性, 引发 ValueError,说明 hidden_size 和 num_attention_heads 不兼容
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        # 1. 获取注意力头数量(num_attention_heads), 每个注意力头的大小(attention_head_size), 所有注意力头的大小(all_head_size)
        # 设置注意力头的数量为配置中的num_attention_heads,决定了有多少个并行的注意力头,例如:12
        self.num_attention_heads = config.num_attention_heads
        # 计算每个注意力头的尺寸,即hidden_size除以注意力头的数量,决定了每个注意力头处理的特征维度大小,例如:64
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        # 计算所有注意力头的总尺寸,即注意力头数量乘以每个头的尺寸,是所有注意力头的总特征维度大小,通常等于 hidden_size,例如:768
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        # 2. 定义query, key, value 线性变换层, dropout层, position_embedding_type, (max_position_embeddings, distance_embedding), is_decoder
        # 定义query,key,value线性变换层,将hidden_size映射到all_head_size
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        # 3. 定义dropout层,用于注意力概率的dropout,防止过拟合
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        # 4. 设置位置嵌入类型,如果没有提供则从配置中获取,默认为'absolute'
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        # 如果位置嵌入类型是 'relative_key'或'relative_key_query', 设置最大位置嵌入数量为配置中的max_position_embeddings 以及 距离嵌入
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

        # 5. 设置是否为解码器
        self.is_decoder = config.is_decoder

    # 转换张量维度方法
    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        # 获取new_x_shape,保持除最后一维外的所有维度不变,然后将最后一维拆分为num_attention_heads和attention_head_size的维度
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)  # 将输入张量x重塑为new_x_shape
        # 将张量维度从 (batch_size, seq_length, num_attention_heads, attention_head_size) 转置为 (batch_size, num_attention_heads, seq_length, attention_head_size)
        return x.permute(0, 2, 1, 3)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:

        # 1. 获取 key, value, query 层
        mixed_query_layer = self.query(hidden_states)
        key_layer = self.transpose_for_scores(self.key(hidden_states))
        value_layer = self.transpose_for_scores(self.value(hidden_states))
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # 2. 计算 query 和 key 的点积,得到注意力得分
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        # 3. 归一化 attention 得分:对注意力得分进行缩放,并应用注意力掩码,例如:sqrt(64)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask

        # 4. 计算注意力概率:使用 softmax 计算注意力权重,并应用 dropout
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)

        # 5. 应用头部掩码:如果有头部掩码,应用头部掩码
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # 6. 计算上下文层:计算 attention_probs 和 value 的点积,得到上下文层,并进行变形。
        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()  # 确保tensor在内存中是连续的
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        # 7.返回输出:根据 output_attentions 参数,决定是否返回注意力权重。如果是解码器,还要返回缓存的键值对
        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        return outputs

根据上面的代码,这里通过举例对每个变量的shape进行详细说明:

# 假设模型的 config 参数
hidden_size=768
num_attention_heads=12
attention_probs_dropout_prob=0.1
max_position_embeddings=512
is_decoder=False

# 超参数
batch_size = 2
seq_length = 10

# 输入变量的值及其shape
hidden_states.shape = torch.Size([2, 10, 768])  # [batch_size, seq_length, hidden_size]
attention_mask.shape = torch.Size([2, 1, 10, 10])  # [batch_size, 1, seq_length, seq_length]
head_mask.shape = torch.Size([1, 12, 1, 1])  # [1, num_attention_heads, 1, 1]
encoder_hidden_states = None
encoder_attention_mask = None
past_key_value = None
output_attentions = True

# 1. 获取 key, value, query 层
query_layer.shape = torch.Size([2, 12, 10, 64])  # [batch_size, num_attention_heads, seq_length, hidden_size/num_attention_heads]
key_layer.shape = torch.Size([2, 12, 10, 64])  # [batch_size, num_attention_heads, seq_length, hidden_size/num_attention_heads]
value_layer.shape = torch.Size([2, 12, 10, 64])  # [batch_size, num_attention_heads, seq_length, hidden_size/num_attention_heads]

# 2. 计算 query 和 key 的点积,得到注意力得分
attention_scores.shape = torch.Size([2, 12, 10, 10])  # [batch_size, num_attention_heads, seq_length, seq_length]

# 3. 归一化 attention 得分:对注意力得分进行缩放,并应用注意力掩码
attention_scores.shape = torch.Size([2, 12, 10, 10])  # [batch_size, num_attention_heads, seq_length, seq_length]

# 4. 计算注意力概率:使用 softmax 计算注意力权重,并应用 dropout
attention_probs.shape = torch.Size([2, 12, 10, 10])  # [batch_size, num_attention_heads, seq_length, seq_length]

# 5. 应用头部掩码:如果有头部掩码,应用头部掩码
attention_probs.shape = torch.Size([2, 12, 10, 10])  # [batch_size, num_attention_heads, seq_length, seq_length]

# 6. 计算上下文层:计算 attention_probs 和 value 的点积,得到上下文层,并进行变形。
context_layer.shape = torch.Size([2, 10, 768])  # [batch_size, seq_length, hidden_size]

3. BertSelfAttention类 源码解析

源码地址:transformers/src/transformers/models/bert/modeling_bert.py

# -*- coding: utf-8 -*-
# @time: 2024/7/15 14:28

import torch
import math

from torch import nn
from typing import Optional, Tuple


class BertSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        """hidden size需要能被attention头的数量整除,以确保每个头能处理hidden size的相等部分。
        例如,如果hidden_size是768,num_attention_heads是12,那么768 % 12等于0,这意味着配置是有效的。"""

        # ----------------------------------------------检查配置--------------------------------------------------------
        # 如果 hidden_size 不能被 num_attention_heads 整除,并且 config 对象没有 embedding_size 属性, 引发 ValueError,说明 hidden_size 和 num_attention_heads 不兼容
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        # 1. 获取注意力头数量(num_attention_heads), 每个注意力头的大小(attention_head_size), 所有注意力头的大小(all_head_size)
        # 设置注意力头的数量为配置中的num_attention_heads,决定了有多少个并行的注意力头,例如:12
        self.num_attention_heads = config.num_attention_heads
        # 计算每个注意力头的尺寸,即hidden_size除以注意力头的数量,决定了每个注意力头处理的特征维度大小,例如:64
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        # 计算所有注意力头的总尺寸,即注意力头数量乘以每个头的尺寸,是所有注意力头的总特征维度大小,通常等于 hidden_size,例如:768
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        # 2. 定义query, key, value 线性变换层, dropout层, position_embedding_type, (max_position_embeddings, distance_embedding), is_decoder
        # 定义query,key,value线性变换层,将hidden_size映射到all_head_size
        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        # 3. 定义dropout层,用于注意力概率的dropout,防止过拟合
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

        # 4. 设置位置嵌入类型,如果没有提供则从配置中获取,默认为'absolute'
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        # 如果位置嵌入类型是 'relative_key'或'relative_key_query', 设置最大位置嵌入数量为配置中的max_position_embeddings 以及 距离嵌入
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)

        # 5. 设置是否为解码器
        self.is_decoder = config.is_decoder

    # 转换张量维度方法
    def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
        # 获取new_x_shape,保持除最后一维外的所有维度不变,然后将最后一维拆分为num_attention_heads和attention_head_size的维度
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_x_shape)  # 将输入张量x重塑为new_x_shape
        # 将张量维度从 (batch_size, seq_length, num_attention_heads, attention_head_size) 转置为 (batch_size, num_attention_heads, seq_length, attention_head_size)
        return x.permute(0, 2, 1, 3)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            head_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor]:

        # -------------1. 计算Query层-----------
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        # 如果这是作为交叉注意力模块实例化的,键和值来自编码器;注意力掩码需要确保编码器的填充标记不会被关注到。

        # --------2. 根据是否为交叉注意力和是否有缓存的键值对,来决定如何获取 key 和 value 层,并设置 attention_mask---------
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:  # 如果提供了 encoder_hidden_states,使用编码器隐藏状态计算键和值
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:  # 如果有 past_key_value,则将旧的键和值与当前的键和值拼接
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:  # 直接使用当前的隐藏状态计算键和值
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        # -----------------1. 转置 Query 层: 将 query 层转置以适应多头注意力的格式-----------------
        query_layer = self.transpose_for_scores(mixed_query_layer)

        # ----------------2. 如果是解码器并且有缓存键值对,则将当前的 key 和 value 层进行缓存-------------
        use_cache = past_key_value is not None
        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # -----------------5. 计算 query 和 key 的点积,得到注意力得分--------------
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        # 3. 相对位置的嵌入:如果使用相对位置嵌入,根据相对位置计算注意力得分并加到 attention_scores 上
        # 相对位置编码允许模型捕捉输入序列中标记之间的相对位置信息,而不是绝对位置信息。
        # 具体来说,这段代码通过计算查询和键之间的相对距离,然后使用这些距离来调整注意力分数。
        if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
            query_length, key_length = query_layer.shape[2], key_layer.shape[2]
            # position_ids_l 是 query 层的position_id
            # position_ids_r 是 key 层的position_id
            if use_cache:
                position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            else:
                position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r  # 计算query位置id和key位置id之间的相对距离
            """distance: 以 query_length = 6, key_length = 6为例:
            position_ids_l = [[0], 
                  [1], 
                  [2], 
                  [3], 
                  [4], 
                  [5]]

            position_ids_r = [[0, 1, 2, 3, 4, 5]]
            
            distance = position_ids_l - position_ids_r
            
            # 计算后的 distance 张量:
            distance = [[ 0, -1, -2, -3, -4, -5], 
                        [ 1,  0, -1, -2, -3, -4], 
                        [ 2,  1,  0, -1, -2, -3], 
                        [ 3,  2,  1,  0, -1, -2], 
                        [ 4,  3,  2,  1,  0, -1], 
                        [ 5,  4,  3,  2,  1,  0]]
            """
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
            # positional_embedding的shape: torch.Size([seq_length, seq_length, hidden_dim / num_head])

            # 如果 position_embedding_type 是 relative_key,计算查询层与相对位置嵌入的内积,得到相对位置得分,然后加到注意力得分上。
            # einsum 是爱因斯坦求和约定(Einstein summation convention)
            # 详解参考:https://blog.csdn.net/weixin_47936614/article/details/141468836
            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key

        # 4. 归一化 attention 得分:对注意力得分进行缩放,并应用注意力掩码,例如:sqrt(64)
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            # 应用注意力掩码(在BertModel的forward()函数中预先计算用于所有层)
            attention_scores = attention_scores + attention_mask

        # 5. 计算注意力概率:使用 softmax 计算注意力权重,并应用 dropout
        # Normalize the attention scores to probabilities.
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        # 6. 应用头部掩码:如果有头部掩码,应用头部掩码
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # 7. 计算上下文层:计算 attention_probs 和 value 的点积,得到上下文层,并进行变形。
        context_layer = torch.matmul(attention_probs, value_layer)
        # 对context_layer进行维度转换,使其符合预期的顺序
        # 这里的permute操作将tensor的维度从 (batch_size, num_heads, seq_length, head_dim) 转换为 (batch_size, seq_length, num_heads, head_dim)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()  # 确保tensor在内存中是连续的
        # 创建新的context_layer形状,将最后两个维度合并成一个
        # new_context_layer_shape 的形状为 (batch_size, seq_length, all_head_size),其中all_head_size = num_heads * head_dim
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # 重新调整context_layer的view,使其符合新的形状
        context_layer = context_layer.view(new_context_layer_shape)

        # 8.返回输出:根据 output_attentions 参数,决定是否返回注意力权重。如果是解码器,还要返回缓存的键值对
        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS_木成河

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值